Abstract

Maximum stabilized water-cut (WC), also known as ultimate water-cut in a reservoir with bottom-water coning, provides important information to decide if reservoir development is economical. To date, theory and determination of stabilized water-cut consider only single-permeability systems so there is a need to extend this concept to naturally fractured reservoirs (NFRs) in carbonate rocks—known for severe bottom-water invasion. This work provides insight of the water coning mechanism in NFR and proposes an analytical method for computing stabilized water-cut and relating to well-spacing design. Simulated experiments on a variety of bottom-water hydrophobic NFRs have been designed, conducted, and analyzed using the dual-porosity/dual-permeability (DPDP) commercial software. They show a pattern of water-cut development in NFR comprising the early water breakthrough and very rapid increase followed by water-cut stabilization stage, and the final stage with progressive water-cut. The initial steply increase of water-cut corresponds to water invading the fractures. The stabilized WC production stage occurs when oil is displaced at a constant rate from matrix to the water-producing fractures. During this stage, water invades matrix at small values of capillary forces so they do not oppose water invasion. In contrast, during the final stage (with progressing water cut), the capillary forces grow significantly so they effectively oppose water invasion resulting in progressive water cut. A simple analytical model explains the constant rate of oil displacement by considering the driving effect of gravity and viscous forces at a very small value of capillary pressure. The constant oil displacement effect is confirmed with a designed series of simulation experiments for a variety of bottom-water NFRs. Statistical analysis of the results correlates the duration of the stabilized WC stage with production rate and well-spacing and provides the basis for optimizing the recovery. Results show that stabilized water-cut stage does not significantly contribute to recovery, so the stage needs to be avoided. Proposed is a new method for finding the optimum well spacing that eliminates the stabilized WC stage while maximizing recovery. The method is demonstrated for the base-case NFR.

References

1.
Lian
,
P. Q.
,
Cheng
,
L. S.
, and
Ma
,
C. Y.
,
2012
, “
The Characteristics of Relative Permeability Curves in Naturally Fractured Carbonate Reservoirs
,”
J. Can. Pet. Technol.
,
51
(
2
), pp.
137
142
. 10.2118/154814-PA
2.
Namani
,
M.
,
Asadollahi
,
M.
, and
Haghighi
,
M.
,
2007
, “
Investigation of Water-Coning Phenomenon in Iranian Carbonate Fractured Reservoirs
,”
International Oil Conference and Exhibition
,
June 27–30
,
Veracruz, Mexico
,
SPE 108254
.
3.
Al-Afaleg
,
N. I.
, and
Ershaghi
,
I.
,
1993
, “
Coning Phenomena in Naturally Fractured Reservoirs
,”
Western Regional Meeting
,
May 26–28
,
Anchorage, Alaska
,
SPE 26083
.
4.
Shadizadeh
,
S. R.
, and
Ghorbani
,
D.
,
2001
, “
Investigation of Water/Gas Coning in Naturally Fractured Hydrocarbon Reservoirs
,”
Petroleum Society’s Canadian International Petroleum Conference
,
June 12–14
,
Calgary, Alberta, Canada
,
Paper 2001-014
.
5.
Barenblast
,
G. I.
, and
Zheltov
,
Y. P.
,
1960
, “
Fundamental Equations of Filtrations of Homogeneous Liquids in Fissured Rocks
,”
Soviet Physics Doklady
,
5
, p.
522
.
6.
Warren
,
J. E.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
SPE J.
,
3
(
3
), pp.
245
255
.
7.
Kazemi
,
H.
,
Merrill
,
L. S.
,
Porterfield
,
K. L.
, and
Zeman
,
P. R.
,
1976
, “
Numerical Simulation of Water-Oil Flow in Naturally Fractured Reservoirs
,”
SPE J.
,
16
(
16
), pp.
317
326
. 10.2118/5719-pa
8.
Gilman
,
J. R.
,
1986
, “
An Efficient Finite Difference Method for Simulating Phase Segregation in the Matrix Blocks in Double-Porosity Reservoirs
,”
SPE Reserv. Eng.
,
1
(
4
), pp.
403
413
. 10.2118/12271-PA
9.
Gilman
,
J. R.
, and
Kazemi
,
H.
,
1988
, “
Improved Calculations for Viscous and Gravity Displacement in Matrix Blocks in Dual-Porosity Simulators
,”
JPT
,
40
(
1
), pp.
60
70
. 10.2118/16010-PA
10.
Dershowitz
,
W.
, and
Lapointe
,
P.
,
1994
, “
Discrete Fracture Approaches for Oil and Gas Applications
,”
Proceedings of the NARMS 94, North American Rock Mechanics Symposium
,
Austin, TX, Balkema, Rotterdam
,
Paper No. ARMA-1994-0019
.
11.
Dershowitz
,
B.
,
Lapointe
,
P.
,
Elben
,
T.
, and
Wel
,
L.
,
2000
, “
Integration of Discrete Feature Network Methods With Conventional Simulator Approaches
,”
SPE Reserv. Eval. Eng.
,
3
(
2
), pp.
165
170
. 10.2118/62498-PA
12.
Sarda
,
S.
,
Jeannin
,
L.
,
Basquet
,
R.
, and
Bourblaux
,
B.
,
2002
, “
Hydraulic Characterization of Fractured Reservoirs: Simulation on Discrete Fracture Models
,”
SPE Reserv. Eval. Eng.
,
5
(
2
), pp.
154
162
. 10.2118/77300-PA
13.
Basquet
,
R.
,
Cohen
,
C. E.
, and
Bourbiaux
,
B.
,
2005
, “
Fracture Flow Property Identification: An Optimized Implementation of Discrete Fracture Network Models
,”
14th SPE Middle East Oil and Gas Show and Conference
,
Mar. 12–15
,
Bahrain
,
SPE 93748
.
14.
Snow
,
D. T.
,
1969
, “
Anisotropic Permeability of Fractured Media
,”
Water Resour. Res.
,
5
(
6
), pp.
1273
1289
. 10.1029/WR005i006p01273
15.
Oda
,
M.
,
1985
, “
Permeability Tensor for Discontinuous Rock Masses
,”
Geotechnique
,
35
(
4
), pp.
483
495
. 10.1680/geot.1985.35.4.483
16.
Long
,
J. C. S.
,
Gilmour
,
P.
, and
Witherspoon
,
P. A.
,
1985
, “
A Model for Steady State Fluid Flow in Random Three-Dimensional Networks of Disc-Shaped Fractures
,”
Water Resour. Res.
,
21
(
8
), pp.
1105
1115
. 10.1029/WR021i008p01105
17.
Durlofsky
,
L. J.
,
1991
, “
Numerical Calculations of Equivalent Gridblock Permeability Tensors for Heterogeneous Porous Media
,”
Water Resour. Res.
,
27
(
5
), pp.
699
708
. 10.1029/91WR00107
18.
Treiber
,
L. E.
, and
Owens
,
W. W.
,
1972
, “
Laboratory Evaluation of the Wettability of 50 Oil-Producing Reservoirs
,”
SPE J.
,
12
(
6
), pp.
531
540
. 10.2118/3526-pa
19.
Chilingar
,
G. V.
, and
Yen
,
T. F.
,
1983
, “
Some Notes on Wettability and Relative Permeabilities of Carbonate Reservoir Rocks II
,”
Energy Sources
,
7
(
1
), pp.
67
75
. 10.1080/00908318308908076
20.
Cuiec
,
L.
,
1984
, “
Rock/Crude-Oil Interactions and Wettability: An Attempt to Understand Their Interrelation
,”
59th Annual Technical Conference and Exhibition
,
Sept. 16–19
,
Houston, TX
,
SPE-13211-MS
.
21.
Haugen
,
A.
,
2010
, “
Fluid Flow in Fractured Carbonates: Wettability Effects and Enhanced oil Recovery
,”
Ph.D. dissertation
,
University of Bergen
,
Bergen, Norway
.
22.
Ozkaya
,
S. I.
, and
Minton
,
K. R.
,
2007
,
Flow Potential of Fracture Corridors and Large Conductive Fractures in a Clastic Reservoir
,
Special Publication, Geological Society of London
,
Oman
, Vol. 270, pp.
245
263
.
23.
Joshi
,
S. D.
,
1991
,
Horizontal Well Technology
, 1st ed.,
Penn Well Books
,
Tulsa, OK
.
24.
Van Golf-Racht
,
T. D.
, and
Sonier
,
F.
,
1994
, “
Water Coning in a Fractured Reservoir
,”
SPE Annual Technical Conference and Exhibition
,
Sept. 25–28
,
New Orleans
,
SPE 28572
.
25.
Bahrami
,
H.
,
Shadizadeh
,
S. R.
, and
Goodarzniya
,
I.
,
2004
, “
Numerical Simulation of Coning Phenomena in Naturally Fractured Reservoirs
,”
9th Iranian Chemical Engineering Congress
,
Tehran, Iran
,
Nov. 23–25
, pp.
4845
4853
.
26.
Bustos
,
A. V.
,
Eduardo
,
A. C.
,
Febres
,
A.
,
Antonio
,
V. P.
,
Pemex
, and
Shen
,
F.
,
2010
, “
Integrated Fractured Reservoir Characterization and Connectivity Study in the Cantarell Field
,”
CPS/SPE International Oil & Gas Conference and Exhibition
,
June 8–10
,
Beijing, China
,
Paper SPE 132241
.
27.
Kuo
,
M. C. T.
, and
Desbrisay
,
C. L.
,
1983
, “
A Simplified Method for Water Coning Predictions
,”
58th Annual Technical Conference and Exhibition
,
Oct. 5–8
,
San Francisco, CA
,
SPE 12067
.
28.
Shirman
,
E. I.
, and
Wojtanowicz
,
A. K.
,
1997
, “
Water Coning Reversal Using Downhole Water Sink—Theory and Experimental Study
,”
SPE Annual Conference and Exhibition
,
Oct. 5–8
,
San Antonio, TX
,
SPE 38792
.
29.
Shirman
,
E. I.
, and
Wojtanowicz
,
A. K.
,
2000
, “
More Oil Using Downhole Water-Sink Technology: A Feasibility Study
,”
SPE Prod. Facil.
,
15
(
4
), pp.
234
240
. 10.2118/66532-PA
30.
Prasun
,
S.
, and
Wojtanowicz
,
A. K.
,
2016
, “
Determination and Implication of Ultimate Water-Cut in Well-Spacing Design for Reservoirs With Water Coning
,”
SPE Eastern Regional Meeting
,
Canton, OH
,
Sept. 13–15
,
SPE 184075
.
31.
Prasun
,
S.
, and
Wojtanowicz
,
A. K.
,
2018
, “
Determination and Implication of Ultimate Water-Cut in Well-Spacing Design for Developed Reservoirs With Water Coning
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082902
. 10.1115/1.4039743
32.
Reiss
,
L. H.
,
1980
,
The Reservoir Engineering Aspects of Fractured Formations. Appendix 5, 83-88
,
Gulf Publishing Co.
,
Houston, TX
.
33.
Hamon
,
G.
,
1988
, “
Oil/Water Gravity Drainage Mechanisms in Oil-Wet Fractured Reservoirs
,”
SPE European Petroleum Conference
,
Oct. 16–19
,
London, UK
,
SPE 18366
.
34.
Pratap
,
M.
,
Kleppe
,
J.
, and
Uleberg
,
K.
,
1997
, “
Vertical Capillary Continuity Between the Matrix Blocks in a Fractured Reservoir Significantly Improves the Oil Recovery by Water Displacement
,”
SPE Middle East Oil Show
,
Mar. 15–18
,
Bahrain
,
SPE 37725
.
35.
Nelson
,
R. A.
,
2001
,
Geologic Analysis of Naturally Fractured Reservoirs
, 2nd ed.,
Gulf Professional Publishing
,
Houston, TX
.
36.
Allan
,
J.
, and
Sun
,
S. Q.
,
2003
, “
Controls on Recovery Factor in Fractured Reservoirs: Lessons Learned From 100 Fractured Fields
,”
SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Oct. 5–8
,
Society of Petroleum Engineers
, SPE 84590-MS.
37.
Thomas
,
L. K.
,
Dixon
,
T. N.
,
Evans
,
C. E.
, and
Vienot
,
M. E.
,
1987
, “
Ekofisk Waterflood Pilot
,”
JPT
,
39
(
2
), pp.
221
232
. 10.2118/13120-PA
38.
Thomas
,
L. K.
,
Dixon
,
T. N.
,
Pierson
,
R. G.
, and
Hermansen
,
H.
,
1991
, “
Ekofisk Nitrogen Injection
,”
SPE Form. Eval.
,
6
(
2
), pp.
151
160
. 10.2118/19839-PA
39.
Boerrigter
,
P. M.
,
Pieters
,
J.
,
Wit
,
K.
, and
Ypma
,
J. G. J.
,
1993
, “
Fractured Reservoir Simulation: Case Studies
,”
SPE Middle East Oil Technical Conference and Exhibition
,
Apr. 3–6
,
Bahrain
,
SPE-25615
.
40.
Tabola
,
D. P.
, and
Baldwin
,
B. A.
,
1995
, “
Capillary Continuity in Fractured Chalk Systems: An Experimental Study
,”
SCA Conference
,
Paper No. 9526
.
41.
Labastie
,
A.
,
1990
, “
Capillary Continuity Between Blocks of a Fractured Reservoir
,”
65th Annual Technical Conference and Exhibition
,
Sept. 23–26
,
New Orleans, LA
,
SPE-20515
.
42.
Horle
,
T.
,
Firoozabadi
,
A.
, and
Ishimoto
,
K.
,
1990
, “
Laboratory Studies of Capillary Interaction in Fracture/Matrix Systems
,”
SPE Reserv. Eng.
,
5
(
3
), pp.
353
360
.10.2118/18282-PA
43.
Tankersley
,
T.
,
Pan
,
Y.
,
Narr
,
W.
,
Laidlaw
,
C. P.
,
Flodin
,
E.
,
Hui
,
M.-H.
, and
Bateman
,
P.
,
2016
, “
Integration of Pressure Transient Data in Modeling Tengiz Field, Kazakhstan—A New Way to Characterize Fractured Reservoirs
.”
SPE Reserv. Eval. Eng.
,
19
(
1
), pp.
5
17
. 10.2118/165322-pa
44.
Geiger
,
S.
,
Dentz
,
M.
, and
Neuweiler
,
I.
,
2013
, “
A Novel Multi-Rate Dual-Porosity Model for Improved Simulation of Fractured and Multiporosity Reservoirs
,”
SPE J.
,
18
(
4
), pp.
670
684
. 10.2118/148130-PA
45.
Kyte
,
J. R.
,
1970
, “
A Centrifuge Method to Predict Matrix-Block Recovery in Fractured Reservoirs
,”
SPE J.
,
10
(
2
), pp.
164
170
.
June 1970
. 10.2118/2729-pa
46.
Corbeanu
,
R.
,
Nasoetion
,
S.
,
Yang
,
K.
,
Labiadh
,
M.
, and
Narayanan
,
R.
,
2014
, “
Reservoir Fracture Characterization and Modeling in a Shuaiba Reservoir
,”
International Petroleum Technology Conference
,
Doha, Qatar
,
Jan. 20–22
,
IPTC 17323
.
47.
Meehan
,
D. N.
,
2011
, “
Using Analog Reservoir Performance to Understand Type I Fractured Reservoir Behavior With Strong Water Drives
,”
SPE Enhanced Oil Recovery Conference
,
Kuala Lumpur, Malaysia
,
July 19–21
,
SPE 144177
.
48.
Buksh
,
G.
,
1991
, “
Development of the Naturally Faculted ISND Shuaiba Reservoir
,”
Middle East Oil Show
,
Bahrain
,
Nov. 16–19
,
SPE 21354
.
49.
Bae
,
C. E.
,
2015
, “
Prediction of Water Cone Formation in a Naturally Fractured Reservoir With Aquifer Drive—An Artificial Expert Application
,”
M.S. thesis
,
The Pennsylvania State University
,
State College, PA
.
50.
Gomez
,
L.
,
Gale
,
J. F. W.
,
Laubach
,
S. E.
, and
Cumella
,
S.
,
2003
, “Chapter 6, Quantifying Fracture Intensity: An Example From the Piceance Basin,”
Piceance Basin 2003 Guidebook
,
K. M.
Peterson
,
T. M.
Olson
, and
D. S.
Anderson
, eds.,
Rocky Mountain Association of Geologists
, pp.
96
113
.
51.
Papatzacos
,
P.
,
1987
, “
Approximate Partial-Penetration Pseudoskin for Infinite-Conductivity Wells
,”
SPE Reserv. Eng.
,
2
(
2
), pp.
227
234
. 10.2118/13956-PA
52.
Tan
,
Y.
,
Li
,
H.
,
Zhou
,
X.
,
Jiang
,
B.
,
Wang
,
Y.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Horizontal Well Performances in Fractured Gas Reservoirs With Bottom-Water and Different Fracture Intensities
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102905
. 10.1115/1.4040201
53.
Song
,
X. Y.
,
Liu
,
Y. T.
,
Jiang
,
X. E.
,
Ding
,
Z. P.
, and
Xue
,
L.
,
2019
, “
A Novel Approach to Assessing the Anisotropic Permeability Parameters of Fractured Media
,”
IOP Conference Series: Materials Science and Engineering
,
474
(
1
), p.
012043
.
54.
Bui
,
T. D.
,
1998
, “
Transient Pressure Analysis for Partially Penetrating Wells in Naturally Fractured Reservoirs
,”
M.S. thesis
,
Texas A & M University
,
Texas
.
55.
Shirman
,
E.
, and
Wojtanowicz
,
A.
,
2009
, “
Vertical Interference Test in Wells With Downhole Water Sink Completions
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
033103
. 10.1115/1.3194772
56.
Chan
,
K. S.
,
1995
, “
Water Cut Diagnostic Plots
,”
SPE ATCE
,
Dallas, TX
,
Oct. 22–25
,
SPE-30775-MS
.
57.
Bourbiaux
,
B.
,
Fourno
,
A.
,
Nguyen
,
Q.
,
Norrant
,
F.
,
Robin
,
M.
,
Rosenberg
,
E.
, and
Argillier
,
J.
,
2016
, “
Experimental and Numerical Assessment of Chemical Enhanced Oil Recovery in Oil-Wet Naturally Fractured Reservoirs
,”
SPE J.
,
21
(
3)
), pp.
706
719
. 10.2118/169140-ms
58.
Namba
,
T.
, and
Hiraoka
,
T.
,
1995
, “
Capillary Force Barriers in a Carbonate Reservoir Under Waterflooding
,”
SPE Middle East Oil Show
,
Bahrain
,
Mar. 11–14
,
SPE 29773
.
59.
Masalmeh
,
S. K.
,
2002
, “
The Effect of Wettability on Saturation Functions and Impact on Carbonate Reservoirs in the Middle East
,”
SPE 10th Abu Dhabi International Petroleum Exhibition and Conference
,
Abu Dhabi
,
Oct. 13–16
,
SPE 78515
.
60.
Narr
,
W.
,
Schechter
,
D. S.
, and
Thompson
,
L. B.
,
2006
,
Naturally Fractured Reservoir Characterization
,
Chap. 4, 63
,
Society of Petroleum Engineers
,
Richardson, TX
.
61.
Boerrigter
,
P. M.
,
Van de Leemput
,
B. L. E. C.
,
Pieters
,
J.
,
Wit
,
K.
, and
Ypma
,
J. G. J.
,
1993
,
Fractured Reservoir Simulation: Case Studies. In Middle East Oil Show
,
Bahrain
,
Apr.
3–6
,
Society of Petroleum Engineers
,
Paper No. SPE 25615-MS
.
62.
Pratap
,
M.
,
Kleppe
,
J.
, and
Uleberg
,
K.
,
1997
, “
Vertical Capillary Continuity Between the Matrix Blocks in a Fractured Reservoir Significantly Improves the Oil Recovery by Water Displacement
,”
SPE Middle East Oil Show
,
Bahrain
, pp.
15
18
.
63.
Gupta
,
R.
,
Smith
,
P. G.
, Jr.
Hu
,
L.
,
Willingham
,
T. W.
,
Cascio
,
M. L.
,
Shyeh
,
J. J.
, and
Harris
,
C. R.
,
2011
, “
Enhanced Waterflood for Middle East Carbonate Cores- Impact of Injection Water Composition
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Sept. 25–28
,
SPE 142668
.
You do not currently have access to this content.