Abstract

Low temperature and high pressure conditions favor the formation of gas clathrate hydrates which is undesirable during oil and gas industries operation. The management of hydrate formation and plugging risk is essential for the flow assurance in the oil and gas production. This study aims to show how hydrate management in the deepwater gas well testing operations in the South China Sea can be optimized. To prevent the plugging of hydrate, three hydrate management strategies are investigated. The first method, injecting thermodynamic hydrate inhibitor (THI) is the most commonly used method to prevent hydrate formation. THI tracking is utilized to obtain the distribution of mono ethylene glycol (MEG) along the pipeline. The optimal dosage of MEG is calculated through further analysis. The second method, hydrate slurry flow technology is applied to the gas well. Pressure drop ratio (PDR) is defined to denote the hydrate blockage risk margin. The third method is the kinetic hydrate inhibitor (KHI) injection. The delayed effect of KHI on the hydrate formation induction time ensures that hydrates do not form in the pipe. This method is effective in reducing the injection amount of inhibitor. The problems of the three hydrate management strategies which should be paid attention to in industrial application are analyzed. This work promotes the understanding of hydrate management strategies and provides guidance for hydrate management optimization in oil and gas industry.

References

1.
Sloan
,
E. D.
, and
Koh
,
C. A.
,
2007
,
Clathrate Hydrates of Natural Gases
, 3rd ed.,
CRC Press
,
New York
.
2.
Chen
,
G.
,
Sun
,
C.
, and
Ma
,
Q. L.
,
2007
,
Natural Gas Hydrate Science and Technology
, 4th ed.,
Chemical Industry Press
,
Beijing
.
3.
Hammerschmidt
,
E. G.
,
1934
, “
Formation of Gas Hydrates in Natural Gas Transmission Lines
,”
Ind. Eng. Chem.
,
26
(
8
), pp.
851
855
. 10.1021/ie50296a010
4.
Sloan
,
D.
,
Creek
,
J.
, and
Sum
,
A. K.
,
2011
, “Chapter Two – Where and How Are Hydrate Plugs Formed?,”
Natural Gas Hydrates in Flow Assurance
,
D.
Sloan
,
C.
Koh
,
A. K.
Sum
,
A. L.
Ballard
,
J.
Creek
,
M.
Eaton
,
J.
Lachance
,
N.
Mcmullen
,
T.
Palermo
,
G.
Shoup
, and
L.
Talley
, eds.,
Gulf Professional Publishing
, pp.
13
36
.
5.
Bernal
,
J. D.
, and
Fowler
,
R. H.
,
2004
, “
A Theory of Water and Ionic Solution, With Particular Reference to Hydrogen and Hydroxyl Ions
,”
J. Chem. Phys.
,
1
(
8
), pp.
515
548
. 10.1063/1.1749327
6.
Sloan
,
E. D.
,
2005
, “
A Changing Hydrate Paradigm—From Apprehension to Avoidance to Risk Management
,”
Fluid Phase Equilib.
,
228-229
(
3
), pp.
67
74
. 10.1016/j.fluid.2004.08.009
7.
Sum
,
A. K.
,
Koh
,
C. A.
, and
Sloan
,
E. D.
,
2012
, “
Developing a Comprehensive Understanding and Model of Hydrate in Multiphase Flow: From Laboratory Measurements to Field Applications
,”
Energy Fuels
,
26
(
7
), pp.
4046
4052
. 10.1021/ef300191e
8.
Shi
,
B. H.
,
Liu
,
Y.
,
Ding
,
L.
,
Lv
,
X. F.
, and
Gong
,
J.
,
2019
, “
New Simulator for Gas-Hydrate Slurry Stratified Flow Based on the Hydrate Kinetic Growth Model
,”
J. Energy Resour. Technol.-Trans. ASME
,
141
(
1
), p.
012906
. 10.1115/1.4040932
9.
Lv
,
X.
,
Yu
,
D.
,
Li
,
W.
,
Shi
,
B.
, and
Gong
,
J.
,
2012
, “
Experimental Study on Blockage of Gas Hydrate Slurry in a Flow Loop
,”
International Pipeline Conference
,
Calgary, Alberta, Canada
,
Sept. 24–28
, pp.
37
43
.
10.
Wang
,
Z.
,
Zhao
,
Y.
,
Sun
,
B.
,
Chen
,
L.
,
Zhang
,
J.
, and
Wang
,
X.
,
2016
, “
Modeling of Hydrate Blockage in Gas-Dominated Systems
,”
Energy Fuels
,
30
(
6
), pp.
4653
4666
. https://doi.org/10.1021/acs.energyfuels.6b00521
11.
Ding
,
L.
,
Shi
,
B.
,
Lv
,
X.
,
Liu
,
Y.
,
Wu
,
H.
,
Wang
,
W.
, and
Gong
,
J.
,
2016
, “
Investigation of Natural Gas Hydrate Slurry Flow Properties and Flow Patterns Using a High Pressure Flow Loop
,”
Chem. Eng. Sci.
,
146
, pp.
199
206
. 10.1016/j.ces.2016.02.040
12.
Wang
,
Z.
,
Zhang
,
J.
,
Sun
,
B.
,
Chen
,
L.
,
Zhao
,
Y.
, and
Fu
,
W.
,
2017
, “
A New Hydrate Deposition Prediction Model for Gas-Dominated Systems With Free Water
,”
Chem. Eng. Sci.
,
163
, pp.
145
154
. 10.1016/j.ces.2017.01.030
13.
Ruan
,
C.
,
Ding
,
L.
,
Shi
,
B.
,
Huang
,
Q.
, and
Gong
,
J.
,
2017
, “
Study of Hydrate Formation in Gas-Emulsion Multiphase Flow Systems
,”
RSC Adv.
,
7
(
76
), pp.
48127
48135
. 10.1039/C7RA09269E
14.
Shi
,
B. H.
,
Song
,
S. F.
,
Lv
,
X. F.
,
Li
,
W. Q.
,
Wang
,
Y.
,
Ding
,
L.
,
Liu
,
Y.
,
Yang
,
J.-H.
,
Wu
,
H.-H.
,
Wang
,
W.
, and
Gong
,
J.
,
2019
, “
Investigation on Natural Gas Hydrate Dissociation From a Slurry to a Water-in-Oil Emulsion in a High-Pressure Flow Loop
,”
Fuel
,
233
, pp.
743
758
. 10.1016/j.fuel.2018.06.054
15.
Song
,
S. F.
,
Shi
,
B. H.
,
Yu
,
W. C.
,
Ding
,
L.
,
Chen
,
Y. C.
,
Yu
,
Y. F.
,
Ruan
,
C.
,
Liu
,
Y.
,
Wang
,
W.
, and
Gong
,
J.
,
2019
, “
A New Methane Hydrate Decomposition Model Considering Intrinsic Kinetics and Mass Transfer
,”
Chem. Eng. J.
,
361
, pp.
1264
1284
. 10.1016/j.cej.2018.12.143
16.
Balakin
,
B. V.
,
Lo
,
S.
,
Kosinski
,
P.
, and
Hoffmann
,
A. C.
,
2016
, “
Modelling Agglomeration and Deposition of Gas Hydrates in Industrial Pipelines With Combined CFD-PBM Technique
,”
Chem. Eng. Sci.
,
153
, pp.
45
57
. 10.1016/j.ces.2016.07.010
17.
Chen
,
Y. C.
,
Shi
,
B. H.
,
Liu
,
Y.
,
Song
,
S. F.
, and
Gong
,
J.
,
2018
, “
Experimental and Theoretical Investigation of the Interaction Between Hydrate Formation and Wax Precipitation in Water-in-Oil Emulsions
,”
Energy Fuels
,
32
(
9
), pp.
9081
9092
. 10.1021/acs.energyfuels.8b01713
18.
Chen
,
Y. C.
,
Shi
,
B. H.
,
Liu
,
Y.
,
Ma
,
Q. L.
,
Song
,
S. F.
,
Ding
,
L.
,
Lv
,
X.
,
Wu
,
H.
,
Wang
,
W.
,
Yao
,
H.
, and
Gong
,
J.
,
2019
, “
In Situ Viscosity Measurements of a Cyclopentane Hydrate Slurry in Waxy Water-in-Oil Emulsions
,”
Energy Fuels
,
33
(
4
), pp.
2915
2925
. 10.1021/acs.energyfuels.8b04268
19.
Liu
,
Y.
,
Shi
,
B. H.
,
Ding
,
L.
,
Ma
,
Q. L.
,
Chen
,
Y. C.
,
Song
,
S.
,
Zhang
,
Y.
,
Yong
,
Y.
,
Lv
,
X.
,
Wu
,
H.
,
Wang
,
W.
, and
Gong
J.
,
2019
, “
Study of Hydrate Formation in Water-in-Waxy Oil Emulsions Considering Heat Transfer and Mass Transfer
,”
Fuel
,
244
, pp.
282
295
. 10.1016/j.fuel.2019.02.014
20.
Dorstewitz
,
F.
, and
Mewes
,
D.
,
1994
, “
The Influence of Heat Transfer on the Formation of Hydrate Layers in Pipes
,”
Int. J. Heat Mass Transfer
,
37
(
14
), pp.
2131
2137
. 10.1016/0017-9310(94)90314-X
21.
Liu
,
W. Y.
,
Hu
,
J. Q.
,
Wu
,
K. L.
,
Sun
,
F. R.
,
Sun
,
Z.
,
Chu
,
H. Y.
, and
Li
,
X. F.
,
2019
, “
A New Hydrate Deposition Prediction Model Considering Hydrate Shedding and Decomposition in Horizontal Gas-Dominated Pipelines
,”
Pet. Sci. Technol.
,
37
(
12
), pp.
1370
1386
. 10.1080/10916466.2019.1587457
22.
Ding
,
L.
,
Shi
,
B.
,
Lv
,
X.
,
Liu
,
Y.
,
Wu
,
H.
,
Wang
,
W.
, and
Gong
,
J.
,
2017
, “
Hydrate Formation and Plugging Mechanisms in Different Gas–Liquid Flow Patterns
,”
Ind. Eng. Chem. Res.
,
56
(
14
), pp.
4173
4184
. 10.1021/acs.iecr.6b02717
23.
Ding
,
L.
,
Shi
,
B.
,
Wang
,
J.
,
Liu
,
Y.
,
Lv
,
X. F.
,
Wu
,
H.
,
Wang
,
W.
,
Lou
,
X.
, and
Gong
,
J.
,
2017
, “
Hydrate Deposition on Cold Pipe Walls in w/o Emulsion Systems
,”
Energy Fuels
,
31
(
9
), pp.
8865
8876
. https://doi.org/10.1021/acs.energyfuels.7b00559
24.
Jassim
,
E.
,
Abdi
,
M. A.
, and
Muzychka
,
Y.
,
2010
, “
A New Approach to Investigate Hydrate Deposition in Gas-Dominated Flowlines
,”
J. Nat. Gas Sci. Eng.
,
2
(
4
), pp.
163
177
. 10.1016/j.jngse.2010.05.005
25.
Zerpa
,
L. E.
,
Rao
,
I.
,
Aman
,
Z. M.
,
Danielson
,
T. J.
,
Koh
,
C. A.
,
Sloan
,
E. D.
, and
Sum
,
A. K.
,
2013
, “
Multiphase Flow Modeling of Gas Hydrates With a Simple Hydrodynamic Slug Flow Model
,”
Chem. Eng. Sci.
,
99
(
32
), pp.
298
304
. 10.1016/j.ces.2013.06.016
26.
Zerpa
,
L. E.
,
Sloan
,
E. D.
,
Sum
,
A. K.
, and
Koh
,
C. A.
,
2012
, “
Overview of CSMHyK: A Transient Hydrate Formation Model
,”
J. Pet. Sci. Eng.
,
98–99
(
6
), pp.
122
129
. 10.1016/j.petrol.2012.08.017
27.
Nicholas
,
J. W.
,
Koh
,
C. A.
, and
Sloan
,
E. D.
,
2009
, “
A Preliminary Approach to Modeling Gas Hydrate/Ice Deposition From Dissolved Water in a Liquid Condensate System
,”
AIChE J.
,
55
(
7
), pp.
1889
1897
. 10.1002/aic.11921
28.
Camargo
,
R.
,
Palermo
,
T.
,
Sinquin
,
A.
, and
Glenat
,
P.
,
2000
, “
Rheological Characterization of Hydrate Suspensions in Oil Dominated Systems
,”
Ann. N. Y. Acad. Sci.
,
912
(
1
), pp.
906
916
. 10.1111/j.1749-6632.2000.tb06844.x
29.
Shi
,
B. H.
,
Chai
,
S.
,
Wang
,
L. Y.
,
Lv
,
X.
,
Liu
,
H. S.
,
Wu
,
H. H.
,
Wang
,
W.
,
Yu
,
D.
, and
Gong
,
J.
,
2016
, “
Viscosity Investigation of Natural gas Hydrate Slurries With Anti-Agglomerants Additives
,”
Fuel
,
185
, pp.
323
338
. 10.1016/j.fuel.2016.07.113
30.
Ding
,
L.
,
Shi
,
B. H.
,
Liu
,
Y.
,
Song
,
S. F.
,
Wang
,
W.
,
Wu
,
H. H.
, and
Gong
,
J.
,
2019
, “
Rheology of Natural Gas Hydrate Slurry: Effect of Hydrate Agglomeration and Deposition
,”
Fuel
,
239
, pp.
126
137
. 10.1016/j.fuel.2018.10.110
31.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flows
,
Cambridge University Press, Cambridge
.
32.
Szymczak
,
S.
,
Sanders
,
K. B.
,
Pakulski
,
M. K.
, and
Higgins
,
T. D.
,
2006
, “
Chemical Compromise: a Thermodynamic and Low-Dose Hydrate-Inhibitor Solution for Hydrate Control in the Gulf of Mexico
,”
SPE Projects Facilities Construction
,
1
(
4
), pp.
1
5
. 10.2118/96418-PA
33.
Kim
,
J.
,
Kim
,
H.
,
Sohn
,
Y. H.
,
Chang
,
D.
,
Seo
,
Y.
, and
Kang
,
S. P.
,
2017
, “
Prevention of Methane Hydrate Re-Formation in Transport Pipeline Using Thermodynamic and Kinetic Hydrate Inhibitors
,”
J. Pet. Sci. Eng.
,
154
, pp.
114
125
. https://doi.org/10.1016/j.petrol.2017.04.011
34.
Denney
,
D.
,
2005
, “
Enhanced Hydrate Inhibition in an Alberta Gas Field
,”
J. Pet. Technol.
,
57
(
4
), pp.
74
75
. 10.2118/0405-0074-JPT
35.
Wu
,
M.
,
Wang
,
S.
, and
Liu
,
H.
,
2007
, “
A Study on Inhibitors for the Prevention of Hydrate Formation in Gas Transmission Pipeline
,”
J. Nat. Gas Chem.
,
16
(
1
), pp.
81
85
. 10.1016/S1003-9953(07)60031-0
36.
Zhang
,
X.
,
2015
, “
Synergism of Thermodynamic Hydrate Inhibitors on the Performance of Poly (Vinyl Pyrrolidone) in Deepwater Drilling Fluid
,”
J. Nat. Gas Sci. Eng.
,
23
, pp.
47
54
. 10.1016/j.jngse.2015.01.042
37.
Kelland
,
M. A.
,
2006
, “
History of the Development of Low Dosage Hydrate Inhibitors
,”
Energy Fuels
,
20
(
3
), pp.
825
847
. 10.1021/ef050427x
38.
Fan
,
S.
,
Wang
,
Y.
, and
Lang
,
X.
,
2011
, “
Progress in the Research of Kinetic Hydrate Inhibitors
,”
Natural Gas Industry
,
31
(
12
), pp.
99
109
.
39.
Kang
,
S. P.
,
Shin
,
J. Y.
,
Lim
,
J. S.
, and
Lee
,
S.
,
2014
, “
Experimental Measurement of the Induction Time of Natural Gas Hydrate and its Prediction With Polymeric Kinetic Inhibitor
,”
Chem. Eng. Sci.
,
116
(
36
), pp.
817
823
. 10.1016/j.ces.2014.04.035
40.
Kim
,
J.
,
Noh
,
Y.
,
Ryu
,
J.
,
Seo
,
Y.
, and
Chang
,
D.
,
2016
, “
Determination of Hydrate Inhibitor Injection Rate Based on the Life-Cycle Cost of the Injection Facility and Mitigating Measures
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
552
562
. 10.1016/j.jngse.2016.07.030
41.
Danielson
,
Thomas John
,
Bansal
,
Krishan M.
,
Djoric
,
Biljana
,
Larrey
,
Dominique
,
Johansen
,
Stein Tore
,
Leebeeck
,
Angela De
, and
Kjolaas
,
Jorn
,
2012
, “
Simulation of Slug Flow in Oil and Gas PIpelines Using a New Transient Simulator
,”
Offshore Technology Conference
,
Houston, TX
,
Apr. 30–May 3
.
42.
Chen
,
G. J.
, and
Guo
,
T. M.
,
1998
, “
A New Approach to Gas Hydrate Modelling
,”
Chem. Eng. J.
,
71
(
2
), pp.
145
151
. 10.1016/S1385-8947(98)00126-0
43.
Davalath
,
J.
, and
Barker
,
J. W.
,
1995
, “
Hydrate Inhibition Design for Deepwater Completions
,”
SPE Drill. Completion
,
10
(
2
), pp.
115
121
. 10.2118/26532-PA
44.
Jacobsen
,
D.
, and
Mcmartin
,
K. E.
,
1986
, “
Methanol and Ethylene Glycol Poisonings
,”
Med. Toxicol.
,
1
(
5
), pp.
309
334
. 10.1007/BF03259846
45.
Cardoso
,
C. A. B. R.
,
Gonçalves
,
M. A. L.
, and
Camargo
,
R. M. T.
,
2015
, “
Design Options for Avoiding Hydrates in Deep Offshore Production
,”
J. Chem. Eng. Data
,
60
(
2
), pp.
330
335
. 10.1021/je500601f
46.
Thomas
,
D. G.
,
1965
, “
Transport Characteristics of Suspension: Viii. A Note on the Viscosity of Newtonian Suspensions of Uniform Spherical Particles ⋆
,”
J. Colloid Sci.
,
20
(
3
), pp.
267
277
. 10.1016/0095-8522(65)90016-4
47.
Lorenzo
,
M. D.
,
Aman
,
Z. M.
,
Soto
,
G. S.
,
Johns
,
M.
,
Kozielski
,
K. A.
, and
May
,
E. F.
,
2014
, “
Hydrate Formation in Gas-Dominant Systems Using a Single-Pass Flowloop
,”
Energy Fuels
,
28
(
5
), pp.
3043
3052
. 10.1021/ef500361r
48.
Abdoul
,
W.
,
Rauzy
,
E.
, and
Péneloux
,
A.
,
1991
, “
Group-Contribution Equation of State for Correlating and Predicting Thermodynamic Properties of Weakly Polar and Non-Associating Mixtures: Binary and Multicomponent Systems
,”
Fluid Phase Equilib.
,
68
(
91
), pp.
47
102
. 10.1016/0378-3812(91)85010-R
49.
Peytavy
,
J. L.
,
Glenat
,
P.
, and
Bourg
,
P.
,
2007
, “
Kinetic Hydrate Inhibitors—Sensitivity Towards Pressure and Corrosion Inhibitors
,”
International Petroleum Technology Conference
,
Dubai, UAE
,
Dec. 4–6
.
50.
Yu
,
W.
,
Wen
,
K.
,
Min
,
Y.
,
He
,
L.
,
Huang
,
W.
, and
Gong
,
J.
,
2018
, “
A Methodology to Quantify the Gas Supply Capacity of Natural Gas Transmission Pipeline System Using Reliability Theory
,”
Reliab. Eng. Syst. Saf.
,
175
, pp.
128
141
. 10.1016/j.ress.2018.03.007
51.
Yu
,
W.
,
Song
,
S.
,
Li
,
Y.
,
Min
,
Y.
,
Huang
,
W.
,
Wen
,
K.
, and
Gong
,
J.
,
2018
, “
Supply Reliability Assessment of Natural Gas Transmission Pipeline Systems
,”
Energy
,
162
, pp.
853
870
. 10.1016/j.energy.2018.08.039
52.
Yarveicy
,
H.
, and
Ghiasi
,
M. M.
,
2017
, “
Modeling of Gas Hydrate Phase Equilibria: Extremely Randomized Trees and LSSVM Approaches
,”
J. Mol. Liq.
,
243
, pp.
533
541
. 10.1016/j.molliq.2017.08.053
53.
Yarveicy
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2018
, “
Determination of the Gas Hydrate Formation Limits to Isenthalpic Joule-Thomson Expansions
,”
Chem. Eng. Res. Des.
,
132
, pp.
208
214
. 10.1016/j.cherd.2017.12.046
54.
May
,
E. F.
,
Lim
,
V. W.
,
Metaxas
,
P. J.
,
Du
,
J.
,
Stanwix
,
P. L.
,
Rowland
,
D.
,
Johns
,
M. L.
,
Haandrikman
,
G.
,
Crosby
,
D.
, and
Aman
,
Z. M.
,
2018
, “
Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons With Nucleation Theory
,”
Langmuir
,
34
(
10
), pp.
3186
3196
. 10.1021/acs.langmuir.7b03901
You do not currently have access to this content.