Abstract

A torrefaction process operating on oxyfuel combustion concept is introduced. The working fluid employed in the process is carbon dioxide captured from the combustion products. The thermodynamic modeling of the process is carried out to determine the energy requirement, recycled CO2 flow rate, energy yield, and CO2 production rate at various torrefaction conditions. The total capital investment and production costs of the new system are also estimated. By increasing the torrefaction severity, the CO2 production rate, recycled gas mass, and the process thermal energy requirement increase, whereas the grinding energy and the energy yield decrease. A comparison made between the performance and economic parameters of the new and a conventional torrefaction processes shows that the proposed process is expected to produce torrefied wood pellet of compatible fuel quality and overall efficiency while eliminating CO2 and NOx emissions at the expense of 11.5% and 9% increase in the capital and production costs, respectively. The proposed torrefaction process requires 91.8 M$ capital investment and 113.2 $ to produce 1 ton of torrefied wood pellets with 91% energy yield and 88% overall plant efficiency. Sensitivity analysis shows that the reactor type and raw biomass costs have significant impact on cost structures.

References

1.
Deka
,
A.
,
Hamta
,
N.
,
Esmaeilian
,
B.
, and
Behdad
,
S.
,
2015
, “
Predictive Modeling Techniques to Forecast Energy Demand in the United States: A Focus on Economic and Demographic Factors
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022001
. 10.1115/1.4031632
2.
Hasan
,
M.
, and
Haseli
,
Y.
,
2018
, “
Modeling Woody Biomass Torrefaction Process
,”
ASME 2018 International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
, p.
V06AT08A001
.
3.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2013
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
36
(
2
), p.
021101
. 10.1115/1.4025286
4.
Haseli
,
Y.
,
2018
, “
Process Modeling of a Biomass Torrefaction Plant
,”
Energy Fuels
,
32
, pp.
5611
5622
. 10.1021/acs.energyfuels.7b03956
5.
Haseli
,
Y.
,
2019
, “
Methods for Biomass Torrefaction With Carbon Dioxide Capture
,” U.S. Patent No. 10,167,428.
6.
Akinyemi
,
O. A.
,
Jiang
,
L.
,
Buchireddy
,
P. R.
,
Barskov
,
S. O.
,
Guillory
,
J. L.
, and
Holmes
,
W.
,
2018
, “
Investigation of Effect of Biomass Torrefaction Temperature on Volatile Energy Recovery Through Combustion
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112003
. 10.1115/1.4040202
7.
Arias
,
B.
,
Pevida
,
C.
,
Fermoso
,
J.
,
Plaza
,
M. G.
,
Rubiera
,
F.
, and
Pis
,
J. J.
,
2008
, “
Influence of Torrefaction on the Grindability and Reactivity of Woody Biomass
,”
Fuel Process. Technol.
,
89
, pp.
169
175
. 10.1016/j.fuproc.2007.09.002
8.
Kokko
,
L.
,
Tolvanen
,
H.
,
Hämäläinen
,
K.
, and
Raiko
,
R.
,
2012
, “
Comparing the Energy Required for Fine Grinding Torrefied and Fast Heat Treated Pine
,”
Biomass Bioenergy
,
42
, pp.
219
223
. 10.1016/j.biombioe.2012.03.008
9.
Fisher
,
E. M.
,
Dupont
,
C.
,
Darvell
,
L. I.
,
Commandré
,
J. M.
,
Saddawi
,
A.
,
Jones
,
J. M.
,
Grateau
,
M.
,
Nocquet
,
T.
, and
Salvador
,
S.
,
2012
, “
Combustion and Gasification Characteristics of Chars From Raw and Torrefied Biomass
,”
Bioresour. Technol.
,
119
, pp.
157
165
. 10.1016/j.biortech.2012.05.109
10.
Pimchuai
,
A.
,
Dutta
,
A.
, and
Basu
,
P.
,
2010
, “
Torrefaction of Agriculture Residue to Enhance Combustible Properties
,”
Energy Fuels
,
24
, pp.
4638
4645
. 10.1021/ef901168f
11.
Shang
,
L.
,
Ahrenfeldt
,
J.
,
Holm
,
J. K.
,
Bach
,
L. S.
,
Stelte
,
W.
, and
Henriksen
,
U. B.
,
2014
, “
Kinetic Model for Torrefaction of Wood Chips in a Pilot-Scale Continuous Reactor
,”
J. Anal. Appl. Pyrolysis
,
108
, pp.
109
116
. 10.1016/j.jaap.2014.05.010
12.
Klinger
,
J.
,
Klemetsrud
,
B.
,
Ziv
,
E. B.
, and
Shonnard
,
D.
,
2014
, “
Temperature Dependence of Aspen Torrefaction Kinetics
,”
J. Anal. Appl. Pyrolysis
,
110
, pp.
424
429
. 10.1016/j.jaap.2014.10.008
13.
Lê Thành
,
K.
,
Commandré
,
J. M.
,
Valette
,
J.
,
Volle
,
G.
, and
Meyer
,
M.
,
2015
, “
Detailed Identification and Quantification of the Condensable Species Released During Torrefaction of Lignocellulosic Biomasses
,”
Fuel Process. Technol.
,
139
, pp.
226
235
. 10.1016/j.fuproc.2015.07.001
14.
Chen
,
D.
,
Gao
,
A.
,
Cen
,
K.
,
Zhang
,
J.
,
Cao
,
X.
, and
Ma
,
Z.
,
2018
, “
Investigation of Biomass Torrefaction Based on Three Major Components: Hemicellulose, Cellulose, and Lignin
,”
Energy Convers. Manage.
,
169
, pp.
228
237
. 10.1016/j.enconman.2018.05.063
15.
Peduzzi
,
E.
,
Boissonnet
,
G.
,
Haarlemmer
,
G.
,
Dupont
,
C.
, and
Maréchal
,
F.
,
2014
, “
Torrefaction Modelling for Lignocellulosic Biomass Conversion Processes
,”
Energy
,
70
, pp.
58
67
. 10.1016/j.energy.2014.03.086
16.
Joshi
,
Y.
,
de Vries
,
H.
,
Woudstra
,
T.
, and
de Jong
,
W.
,
2015
, “
Torrefaction: Unit Operation Modelling and Process Simulation
,”
Appl. Therm. Eng.
,
74
, pp.
83
88
. 10.1016/j.applthermaleng.2013.12.059
17.
Park
,
C.
,
Zahid
,
U.
,
Lee
,
S.
, and
Han
,
C.
,
2015
, “
Effect of Process Operating Conditions in the Biomass Torrefaction: A Simulation Study Using One-Dimensional Reactor and Process Model
,”
Energy
,
79
, pp.
127
139
. 10.1016/j.energy.2014.10.085
18.
Sermyagina
,
E.
,
Saari
,
J.
,
Zakeri
,
B.
,
Kaikko
,
J.
, and
Vakkilainen
,
E.
,
2015
, “
Effect of Heat Integration Method and Torrefaction Temperature on the Performance of an Integrated CHP-Torrefaction Plant
,”
Appl. Energy
,
149
, pp.
24
34
. 10.1016/j.apenergy.2015.03.102
19.
Haseli
,
Y.
,
2019
, “
Simplified Model of Torrefaction-Grinding Process Integrated With a Power Plant
,”
Fuel Process. Technol.
,
188
, pp.
118
128
. 10.1016/j.fuproc.2019.02.008
20.
Allam
,
R. J.
,
Palmer
,
M. R.
,
Brown
,
G. W.
Jr
,
Fetvedt
,
J.
,
Freed
,
D.
,
Nomoto
,
H.
,
Itoh
,
M.
,
Okita
,
N.
, and
Jones
,
C.
Jr
,
2013
, “
High Efficiency and Low Cost of Electricity Generation from Fossil Fuels while Eliminating Atmospheric Emissions, Including Carbon Dioxide
,”
Energy Procedia
,
37
, pp.
1135
1149
. 10.1016/j.egypro.2013.05.211
21.
Sifat
,
N. S.
, and
Haseli
,
Y.
,
2018
, “
Thermodynamic modeling of Allam cycle
,”
ASME International Mechanical Engineering and Congress Exposition
,
Pittsburg, PA
,
Nov. 9–15
.
22.
Repellin
,
V.
,
Govin
,
A.
,
Rolland
,
M.
, and
Guyonnet
,
R.
,
2010
, “
Energy Requirement for Fine Grinding of Torrefied Wood
,”
Biomass Bioenergy
,
34
, pp.
923
930
. 10.1016/j.biombioe.2010.01.039
23.
Rudolfsson
,
M.
,
Stelte
,
W.
, and
Lestander
,
T. A.
,
2015
, “
Process Optimization of Combined Biomass Torrefaction and Pelletization for Fuel Pellet Production—A Parametric Study
,”
Appl. Energy
,
140
, pp.
378
384
. 10.1016/j.apenergy.2014.11.041
24.
Beysel
,
G.
,
2009
, “
Enhanced Cryogenic air Separation: A Proven Process Applied to Oxyfuel Future Prospec
,”
Proceedings of the 1st Oxyfuel Combustion Conference
,
Cottbus, Germany
,
Sept. 8
.
25.
Zhao
,
Y.
,
Wanga
,
B.
,
Chid
,
J.
, and
Xiao
,
Y.
,
2018
, “
Parametric Study of a Direct-Fired Supercritical Carbon Dioxide Power Cycle Coupled to Coal Gasification Process
,”
Energy Convers. Manage.
,
156
, pp.
733
745
. 10.1016/j.enconman.2017.11.044
26.
Mletzko
,
J.
,
Ehlers
,
S.
, and
Kather
,
A.
,
2016
, “
Comparison of Natural Gas Combined Cycle Power Plants With Post Combustion and Oxyfuel Technology at Different CO2 Capture Rates
,”
Energy Procedia
,
86
, pp.
2
11
. 10.1016/j.egypro.2016.01.001
27.
Klein
,
S. A.
,
2018
, “
EES—Engineering Equation Solver, Version 10.442, F-Chart Software
,” http://fchart.com.
28.
Bergman
,
P. C. A.
,
Boersma
,
A. R.
,
Zwart
,
R. W. R.
, and
Kiel
,
J. H. A.
,
2005
,
Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations
,
Energy Research Center of the Netherlands (ECN)
,
Petten, Netherlands
.
29.
Dhungana
,
A.
,
Basu
,
P.
, and
Dutta
,
A.
,
2012
, “
Effects of Reactor Design on the Torrefaction of Biomass
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041801
. 10.1115/1.4007484
30.
Perry
,
H. R.
,
Maloney
,
J. O.
, and
Green
,
D. W.
,
1997
,
Perry's Chemical Engineers' Handbook
,
McGraw-Hill
,
New York
.
31.
Peters
,
M. S.
, and
Timmerhaus
,
K. D.
,
1991
,
Plant Design and Economics for Chemical Engineers
, 4th ed.,
McGraw-Hill
,
New York
.
32.
Sayyaadi
,
H.
, and
Nejatolahi
,
M.
,
2011
, “
Multi-objective Optimization of a Cooling Tower Assisted Vapor Compression Refrigeration System
,”
Int. J. Refrig.
,
34
, pp.
243
256
. 10.1016/j.ijrefrig.2010.07.026
33.
Khaljani
,
M.
,
Saray
,
R. K.
, and
Bahlouli
,
K.
,
2015
, “
Comprehensive Analysis of Energy, Exergy and Exergo-Economic of Cogeneration of Heat and Power in a Combined gas Turbine and Organic Rankine Cycle
,”
Energy Convers. Manage.
,
97
, pp.
154
165
. 10.1016/j.enconman.2015.02.067
34.
Hasan
,
M.
,
Haseli
,
Y.
, and
Karadogan
,
E.
,
2018
, “
Correlations to Predict Elemental Compositions and Heating Value of Torrefied Biomass
,”
Energies
,
11
, p.
2443
. 10.3390/en11092443
35.
Campanari
,
S.
,
Chiesa
,
P.
,
Manzolini
,
G.
, and
Bedogni
,
S.
,
2014
, “
Economic Analysis of CO2 Capture From Natural Gas Combined Cycles Using Molten Carbonate Fuel Cells
,”
Appl. Energy
,
130
, pp.
562
573
. 10.1016/j.apenergy.2014.04.011
36.
Manzolini
,
G.
,
Macchi
,
E.
, and
Gazzani
,
M.
,
2013
, “
CO2 Capture in Integrated Gasification Combined Cycle With SEWGS—Part B: Economic Assessment
,”
Energy
,
105
, pp.
220
227
.
37.
Baghernejad
,
A.
, and
Yaghoubi
,
M.
,
2011
, “
Exergoeconomic Analysis and Optimization of an Integrated Solar Combined Cycle System (ISCCS) Using Genetic Algorithm
,”
Energy Convers. Manage.
,
52
, pp.
2193
2203
. 10.1016/j.enconman.2010.12.019
38.
Pirraglia
,
A.
,
Gonzalez
,
R.
,
Denig
,
J.
, and
Saloni
,
D.
,
2013
, “
Technical and Economic Modeling for the Production of Torrefied Ligno-Cellulosic Biomass for the U.S. Densified Fuel Industry
,”
BioEnergy Res.
,
6
, pp.
263
275
. 10.1007/s12155-012-9255-6
39.
Pirraglia
,
A.
,
Gonzalez
,
R.
,
Saloni
,
D.
, and
Denig
,
J.
,
2013
, “
Technical and Economic Assessment for the Production of Torrefied Lingo-Cellulosic Biomass Pellet in the US
,”
Energy Convers. Manage.
,
66
, pp.
153
164
. 10.1016/j.enconman.2012.09.024
40.
Rokni
,
E.
,
Liu
,
L.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2019
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction, and Air Flowrate
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082202
. 10.1115/1.4042564
41.
Saleh
,
S. B.
,
Flensborg
,
J. P.
,
Shoulaifar
,
T. K.
,
Sárossy
,
Z.
,
Hansen
,
B. B.
,
Egsgaard
,
H.
,
DeMartini
,
N.
,
Jensen
,
P. A.
,
Glarborg
,
P.
, and
Dam-Johansen
,
K.
,
2014
, “
Release of Chlorine and Sulfur During Biomass Torrefaction and Pyrolysis
,”
Energy Fuels
,
28
, pp.
3738
3746
. 10.1021/ef4021262
You do not currently have access to this content.