Abstract

There has been a resurgence of interest in the development of small-scale vertical-axis wind turbines (VAWTs) in the past few decades as is evident from the plethora of published scientific work. This attention may be attributed to the desperate need for cheaper, cleaner, and off-grid mechanisms for generating electric power. In such hasty scenario, VAWTs are being considered as one of the potential solution for small-scale power generation. Among the VAWTs, H-type Darrieus rotors have undergone extensive exploration. In this review work, an attempt has been made to assemble all the major areas of research done in the field of H-type Darrieus rotor development. These areas include the aerodynamic models, computational fluid dynamics (CFD) methods and turbulence models, self-starting and dynamic stalling behavior, blade-vortex interaction and wake studies, and blade designs and optimization studies, besides topics of special interest like blade curvature effects and skewed flows. Overall, the work gives a comprehensive review of the state-of-the-art technology of the H-type Darrieus rotor. Finally, recommendations have been made for each of the areas keeping in view of the technological development.

References

1.
Global Wind Energy Council (GWEC)
,
2016
, “
Global Wind Report Annual Market Update
,” Technical Report.
2.
Global Wind Energy Council (GWEC)
,
2017
, “
Global Wind Report Annual Market Update
,” Technical Report.
3.
Eriksson
,
S.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2008
, “
Evaluation of Different Turbine Concepts for Wind Power
,”
Renew. Sustain. Energy Rev.
,
12
(
5
), pp.
1419
1434
. 10.1016/j.rser.2006.05.017
4.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
. 10.1115/1.4038785
5.
Tjiu
,
W.
,
Marnoto
,
T.
,
Mat
,
S.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2015
, “
Darrieus Vertical Axis Wind Turbine for Power Generation I: Assessment of Darrieus VAWT Configurations
,”
Renew. Energy
,
75
, pp.
50
67
. 10.1016/j.renene.2014.09.038
6.
Darrieus
,
G. J. M.
,
1931
, “
Turbine Having Its Rotating Shaft Traverse to the Flow of the Current
,” U.S. Patent No. 1,835,018.
7.
Chaichana
,
T.
, and
Chaitep
,
S.
,
2010
, “
Wind Power Potential and Characteristic Analysis of Chiang Mai, Thailand
,”
J. Mech. Sci. Technol.
,
24
(
7
), pp.
1475
1479
. 10.1007/s12206-010-0415-3
8.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
. 10.1115/1.4041848
9.
Shikha
,
Bhatti
,
T. S.
, and
Kothari
,
D. P.
,
2005
, “
Early Development of Modern Vertical and Horizontal Axis Wind Turbines: A Review
,”
Wind Eng.
,
29
(
3
), pp.
287
299
. 10.1260/030952405774354859
10.
Herbert
,
G. M. J.
,
Iniyan
,
S.
,
Sreevalsan
,
E.
, and
Rajapandian
,
S.
,
2007
, “
A Review of Wind Energy Technologies
,”
Renew. Sustain. Energy Rev.
,
11
(
6
), pp.
1117
1145
. 10.1016/j.rser.2005.08.004
11.
Bhutta
,
M. M. A.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Jamil
,
S. R.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques
,”
Renew. Sustain. Energy Rev.
,
16
(
4
), pp.
1926
1939
. 10.1016/j.rser.2011.12.004
12.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
. 10.1115/1.4030109
13.
Ishugah
,
T. F.
,
Li
,
Y.
,
Wang
,
R. Z.
, and
Kiplagat
,
J. K.
,
2014
, “
Advances in Wind Energy Resource Exploitation in Urban Environment: A Review
,”
Renew. Sustain. Energy Rev.
,
37
, pp.
613
626
. 10.1016/j.rser.2014.05.053
14.
Tummala
,
A.
,
Kishore
,
R.
,
Kumar
,
D.
,
Indraja
,
V.
, and
Krishna
,
V. H.
,
2016
, “
A Review on Small Scale Wind Turbines
,”
Renew. Sustain. Energy Rev.
,
56
, pp.
1351
1371
. 10.1016/j.rser.2015.12.027
15.
Wong
,
K. H.
,
Chong
,
W. T.
,
Sukiman
,
N. L.
,
Poh
,
S. C.
,
Shiah
,
Y.-C.
, and
Wang
,
C.-T.
,
2017
, “
Performance Enhancements on Vertical Axis Wind Turbines Using Flow Augmentation Systems: A Review
,”
Renew. Sustain. Energy Rev.
,
73
, pp.
904
921
. 10.1016/j.rser.2017.01.160
16.
Kumar
,
R.
,
Raahemifar
,
K.
, and
Fung
,
A. S.
,
2018
, “
A Critical Review of Vertical Axis Wind Turbines for Urban Applications
,”
Renew. Sustain. Energy Rev.
,
89
, pp.
281
291
. 10.1016/j.rser.2018.03.033
17.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
. 10.1115/1.4037757
18.
Islam
,
M.
,
Ting
,
D. S.
, and
Fartaj
,
A.
,
2008
, “
Aerodynamic Models for Darrieus-Type Straight-Bladed Vertical Axis Wind Turbines
,”
Renew. Sustain. Energy Rev.
,
12
, pp.
1087
1109
. 10.1016/j.rser.2006.10.023
19.
Chen
,
J.
,
Yang
,
H.
,
Yang
,
M.
,
Xu
,
H.
, and
Hu
,
Z.
,
2015
, “
A Comprehensive Review of the Theoretical Approaches for the Airfoil Design of Lift-Type Vertical Axis Wind Turbine
,”
Renew. Sustain. Energy Rev.
,
51
, pp.
1709
1720
. 10.1016/j.rser.2015.07.065
20.
Jin
,
X.
,
Zhao
,
G.
,
Gao
,
K.
, and
Ju
,
W.
,
2015
, “
Darrieus Vertical Axis Wind Turbine: Basic Research Methods
,”
Renew. Sustain. Energy Rev.
,
42
, pp.
212
225
. 10.1016/j.rser.2014.10.021
21.
Ghasemian
,
M.
,
Ashrafi
,
Z. N.
, and
Sedaghat
,
A.
,
2017
, “
A Review on Computational Fluid Dynamic Simulation Techniques for Darrieus Vertical Axis Wind Turbines
,”
Energy Convers. Manag.
,
149
, pp.
87
100
. 10.1016/j.enconman.2017.07.016
22.
Mohammed
,
A. A.
,
Ouakad
,
H. M.
,
Sahin
,
A. Z.
, and
Bahaidarah
,
H. M. S.
,
2019
, “
Vertical Axis Wind Turbine Aerodynamics: Summary and Review of Momentum Models
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
050801
. 10.1115/1.4042643
23.
Fujisawa
,
N.
, and
Shibuya
,
S.
,
2001
, “
Observations of Dynamic Stall on Darrieus Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
2
), pp.
201
214
. 10.1016/S0167-6105(00)00062-3
24.
Templin
,
R. J.
, “
Aerodynamic Performance Theory for the NRC Vertical-Axis Wind Turbine
,” NRC Lab. Rep. LTR-LA-190.
25.
Wilson
,
R. E.
, and
Lissaman
,
P. B. S.
,
Applied Aerodynamics of Wind Power Machines
,
Oregon State University
,
Oregon
.
26.
Strickland
,
J. H.
,
1976
, “
A Performance Prediction Model for the Darrieus Turbine
,”
International Symposium on Wind Energy Systems
,
Cambridge, UK
,
Sept. 7–9
, pp. C3-39–C3-54.
27.
Muraca
,
J. R.
,
Stephen
,
M. V.
, and
Dagenhart
,
J. R.
,
1975
, “
Theoretical Performance of Cross-Wind Axis Turbines With Results for a Catenary Vertical Axis Configuration
,” Report No. NASA TMX-72662.
28.
Sharpe
,
D. J.
,
1977
, “
A Theoretical and Experimental Study of the Darrieus Vertical Axis Wind Turbine
,”
Polytechnic School of Mechanical, Aeronautical and Production Engineering
, Research Report.
29.
Read
,
S.
, and
Sharpe
,
D. J.
,
1980
, “
An Extended Multiple Streamtube Theory for Vertical Axis Wind Turbines
,”
2nd BWEA Wind Energy Workshop
,
Cranfield, UK
,
Apr. 17–18
, pp.
65
72
.
30.
Paraschivoiu
,
I.
,
Fraunie
,
P.
, and
Beguie
,
C.
,
1985
, “
Streamtube Expansion Effects on the Darrieus Wind Turbine
,”
J. Propuls. Power
,
1
(
2
), pp.
150
155
. 10.2514/3.22773
31.
Castelli
,
M. R.
,
Fedrigo
,
A.
, and
Benini
,
E.
,
2012
, “
Effect of Dynamic Stall, Finite Aspect Ratio and Streamtube Expansion on VAWT Performance Prediction Using the BE-M Model
,”
Int. J. Aerosp. Mech. Eng.
,
6
(
8
), pp.
1408
1420
.
32.
Bangga
,
G.
,
Dessoky
,
A.
,
Lutz
,
T.
, and
Krämer
,
E.
,
2019
, “
Improved Double-Multiple-Streamtube Approach for H-Darrieus Vertical Axis Wind Turbine Computations
,”
Energy
,
182
, pp.
673
688
. 10.1016/j.energy.2019.06.083
33.
Paraschivoiu
,
I.
, “
Double-Multiple Streamtube Model for Darrieus Wind Turbines
,”
2nd DOE/NASA Wind Turbine Dynamics Work
,
Cleveland, OH
, Paper No. NASA CP-2185.
34.
Paraschivoiu
,
I.
, and
Delclauxt
,
F.
,
1983
, “
Double Multiple Streamtube Model With Recent Improvements
,”
J. Energy
,
7
(
3
), pp.
250
255
. 10.2514/3.48077
35.
Larsen
,
H.
,
1975
, “
Summary of a Vortex Theory for the Cyclogiro
,”
Proceedings of the Second US National Conference on Wind Engineering Research
,
Colorado State University, Fort Collins, CO
,
June 22–25
, p.
V8-1-3
.
36.
Fanucci
,
J.
, and
Walter
,
R.
,
1976
, “
Innovative Wind Machines: the Theoretical Performance of a Vertical-Axis Wind Turbine
,”
Proceedings of the Vertical-Axis Wind Turbine Technology Workshop
,
Sandia Laboratories
, pp.
61
95
, SAND 76-5586.
37.
Wilson
,
R. E.
,
1980
, “
Wind-Turbine Aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
5
(
3–4
), pp.
357
372
. 10.1016/0167-6105(80)90042-2
38.
Holme
,
O. A.
,
1976
, “
Contribution to the Aerodynamic Theory of the Vertical Axis Wind Turbine
,”
International Symposium on Wind Energy Systems
,
Sept. 7–9
,
Cambridge, England
, pp.
C4-55
C4-71
.
39.
Strickland
,
J. H.
,
Webster
,
B. T.
, and
Nguyen
,
T.
,
1979
, “
A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study
,”
ASME J. Fluids Eng.
,
101
(
4
), pp.
500
505
. 10.1115/1.3449018
40.
Cardona
,
J. L.
,
1984
, “
Flow Curvature and Dynamic Stall Simulated With an Aerodynamic Freevortex Model for VAWT
,”
Wind Eng.
,
8
, pp.
135
143
.
41.
Hirsch
,
H.
, and
Mandal
,
A. C.
,
1987
, “
A Cascade Theory for the Aerodynamic Performance of Darrieus Wind Turbines
,”
Wind Eng.
,
11
(
3
), pp.
164
175
.
42.
Mandal
,
A. C.
, and
Burton
,
J. D.
,
1994
, “
The Effects of Dynamic Stall and Flow Curvature on the Aerodynamics of Darrieus Turbines Applying the Cascade Model
,”
Wind Eng.
,
18
(
6
), pp.
267
282
.
43.
Wilson
,
R. E.
, and
Walker
,
S. N.
,
1983
, “
Fixed Wake Theory for Vertical Axis Wind Turbines
,”
ASME J. Fluids Eng.
,
105
(
4
), pp.
389
393
. 10.1115/1.3241016
44.
Basuno
,
B.
,
Coton
,
F. N.
, and
Galbraith
,
R. A.
,
1992
, “
A Prescribed Wake Aerodynamic Model for Vertical Axis Wind Turbines
,”
Proc. Inst. Mech. Eng.
,
206
(
3
), pp.
159
166
. 10.1243/PIME_PROC_1992_206_026_02
45.
Coton
,
F. N.
,
Jiang
,
D.
, and
Galbraith
,
R. A. M.
,
1994
, “
An Unsteady Prescribed Wake Model for Vertical Axis Wind Turbines
,”
Proc. Inst. Mech. Eng.
,
208
(
1
), pp.
13
20
. 10.1243/PIME_PROC_1994_208_004_02
46.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Energy Convers. Manag.
,
52
(
1
), pp.
236
242
. 10.1016/j.enconman.2010.06.070
47.
Dyachuk
,
E.
, and
Goude
,
A.
,
2015
, “
Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model
,”
Energies
,
8
(
2
), pp.
1353
1372
. 10.3390/en8021353
48.
Tai
,
F.-Z.
,
Yun
,
T.-H.
,
Kang
,
K.-W.
, and
Lee
,
J.-H.
,
2014
, “
Analysis of Small Vertical Wind Turbine Having H-Darrieus Blades With Stall Delay Model
,”
J. Renew. Sustain. Energy
,
5
(
5
), pp.
1
10
. 10.1063/1.4826702
49.
Roh
,
S.
, and
Kang
,
S.
,
2013
, “
Effects of a Blade Profile, the Reynolds Number, and the Solidity on the Performance of a Straight Bladed Vertical Axis Wind Turbine
,”
J. Mech. Sci. Technol.
,
27
(
11
), pp.
3299
3307
. 10.1007/s12206-013-0852-x
50.
Blackwell
,
B. F.
, and
Sheldahl
,
R. E.
,
1977
, “
Selected Wind Tunnel Test Results for the Darrieus Wind Turbine
,”
J. Energy
,
1
(
6
), pp.
382
386
. 10.2514/3.47948
51.
Li
,
Q.
,
Maeda
,
T.
,
Kamada
,
Y.
,
Murata
,
J.
,
Yamamoto
,
M.
,
Ogasawara
,
T.
,
Shimizu
,
K.
, and
Kogaki
,
T.
,
2016
, “
Study on Power Performance for Straight-Bladed Vertical Axis Wind Turbine by Field and Wind Tunnel Test
,”
Renewable Energy
,
90
, pp.
291
300
. 10.1016/j.renene.2016.01.002
52.
Saeidi
,
D.
,
Sedaghat
,
A.
,
Alamdari
,
P.
, and
Alemrajabi
,
A. A.
,
2013
, “
Aerodynamic Design and Economical Evaluation of Site Specific Small Vertical Axis Wind Turbines
,”
Appl. Energy
,
101
, pp.
765
775
. 10.1016/j.apenergy.2012.07.047
53.
Kozak
,
P. A.
,
Vallverdú
,
D.
, and
Rempfer
,
D.
,
2016
, “
Modeling Vertical-Axis Wind-Turbine Performance: Blade-Element Method Versus Finite Volume Approach
,”
J. Propuls. Power
,
32
(
3
), pp.
592
601
. 10.2514/1.B35550
54.
Balduzzi
,
F.
,
Marten
,
D.
,
Bianchini
,
A.
,
Drofelnik
,
J.
,
Ferrari
,
L.
,
Campobasso
,
M. S.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
, and
Paschereit
,
C. O.
,
2017
, “
Three-dimensional Aerodynamic Analysis of a Darrieus Wind Turbine Blade Using Computational Fluid Dynamics and Lifting Line Theory
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022602
. 10.1115/1.4037750
55.
Wendler
,
R.
,
Calderón-Muñoz
,
W. R.
, and
LeBoeuf
,
R.
,
2016
, “
Energy-Based Iteration Scheme of the Double-Multiple Streamtube Model in Vertical-Axis Wind Turbines
,”
Acta Mech.
,
227
(
11
), pp.
3295
3303
. 10.1007/s00707-015-1544-7
56.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renew. Energy
,
85
, pp.
419
435
. 10.1016/j.renene.2015.06.048
57.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
. 10.1016/j.energy.2015.12.111
58.
Brahimi
,
M. T.
,
Allet
,
A.
, and
Paraschivoiu
,
I.
,
1995
, “
Aerodynamic Analysis Models for Vertical-Axis Wind Turbines
,”
Int. J. Rotating Mach.
,
2
(
1
), pp.
15
21
. 10.1155/S1023621X95000169
59.
Ponta
,
F. L.
, and
Jacovkis
,
P. M.
,
2001
, “
A Vortex Model for Darrieus Turbine Using Finite Element Techniques
,”
Renewable Energy
,
24
(
1
), pp.
1
18
. 10.1016/S0960-1481(00)00190-7
60.
Rajagopalan
,
R. G.
, and
Fanuccit
,
J. B.
,
1985
, “
Finite Difference Model for Vertical Axis Wind Turbines
,”
J. Propuls. Power
,
1
(
6
), pp.
432
436
. 10.2514/3.22824
61.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review on the Numerical Investigations Into the Design and Development of Savonius Wind Rotors
,”
Renew. Sustain. Energy Rev.
,
24
, pp.
73
83
. 10.1016/j.rser.2013.03.060
62.
Poradowski
,
W.
,
2014
, “
Turbulence Modeling Introduction to ANSYS FLUENT
,”
28
February
.
63.
Cummings
,
R. M.
,
Forsythe
,
J. R.
,
Morton
,
S. A.
, and
Squires
,
K. D.
,
2003
, “
Computational Challenges in High Angle of Attack Flow Prediction
,”
Prog. Aerosp. Sci.
,
39
(
5
), pp.
369
384
. 10.1016/S0376-0421(03)00041-1
64.
Ghasemian
,
M.
, and
Nejat
,
A.
,
2015
, “
Aero-acoustics Prediction of a Vertical Axis Wind Turbine Using Large Eddy Simulation and Acoustic Analogy
,”
Energy
,
88
, pp.
711
717
. 10.1016/j.energy.2015.05.098
65.
Shamsoddin
,
S.
, and
Porté-Agel
,
F.
,
2014
, “
Large Eddy Simulation of Vertical Axis Wind Turbine Wakes
,”
Energies
,
7
(
2
), pp.
890
912
. 10.3390/en7020890
66.
Shamsoddin
,
S.
, and
Porté-agel
,
F.
,
2016
, “
A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer
,”
Energies
,
9
(
5
), pp.
1
23
. 10.3390/en9050366
67.
Li
,
C.
,
Zhu
,
S.
,
Xu
,
Y. L.
, and
Xiao
,
Y.
,
2013
, “
2.5D Large Eddy Simulation of Vertical Axis Wind Turbine in Consideration of High Angle of Attack Flow
,”
Renew. Energy
,
51
, pp.
317
330
. 10.1016/j.renene.2012.09.011
68.
Peng
,
H. Y.
, and
Lam
,
H. F.
,
2016
, “
Turbulence Effects on the Wake Characteristics and Aerodynamic Performance of a Straight-Bladed Vertical Axis Wind Turbine by Wind Tunnel Tests and Large Eddy Simulations
,”
Energy
,
109
, pp.
557
568
. 10.1016/j.energy.2016.04.100
69.
Elkhoury
,
M.
,
Kiwata
,
T.
, and
Aoun
,
E.
,
2015
, “
Experimental and Numerical Investigation of a Three-Dimensional Vertical-Axis Wind Turbine With Variable-Pitch
,”
J. Wind Eng. Ind. Aerodyn.
,
139
, pp.
111
123
. 10.1016/j.jweia.2015.01.004
70.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
. 10.1016/S0142-727X(00)00007-2
71.
Ferreira
,
C. J. S.
,
van Zuijlen
,
A.
,
Bijl
,
H.
,
van Bussel
,
G.
, and
van Kuik
,
G.
,
2010
, “
Simulating Dynamic Stall in a Two-Dimensional Vertical-Axis Wind Turbine: Verification and Validation With Particle Image Velocimetry Data
,”
Wind Energy
,
13
, pp.
1
17
. 10.1002/we.330
72.
Lei
,
H.
,
Zhou
,
D.
,
Bao
,
Y.
,
Li
,
Y.
, and
Han
,
Z.
,
2017
, “
Three-dimensional Improved Delayed Detached Eddy Simulation of a Two-Bladed Vertical Axis Wind Turbine
,”
Energy Convers. Manag.
,
133
, pp.
235
248
. 10.1016/j.enconman.2016.11.067
73.
Lam
,
H. F.
, and
Peng
,
H. Y.
,
2016
, “
Study of Wake Characteristics of a Vertical Axis Wind Turbine by Two- and Three-Dimensional Computational Fluid Dynamics Simulations
,”
Renew. Energy
,
90
, pp.
386
398
. 10.1016/j.renene.2016.01.011
74.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
. 10.1016/0045-7825(74)90029-2
75.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A new k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
. 10.1016/0045-7930(94)00032-T
76.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
. 10.1007/BF01061452
77.
Dewan
,
A.
,
2011
,
Tackling Turbulent Flows in Engineering
,
Springer-Verlag
,
Berlin Heidelberg
.
78.
Simao Ferreira
,
C.
,
van Bussel
,
G.
, and
Van Kuik
,
G.
,
2007
, “
2D CFD Simulation of Dynamic Stall on a Vertical Axis Wind Turbine: Verification and Validation With PIV Measurements
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8–11
.
79.
Edwards
,
J.
,
Durrani
,
N.
,
Howell
,
R.
, and
Qin
,
N.
,
2008
, “
Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 7–10
.
80.
Mohamed
,
M. H.
,
2013
, “
Impacts of Solidity and Hybrid System in Small Wind Turbines Performance
,”
Energy
,
57
, pp.
495
504
. 10.1016/j.energy.2013.06.004
81.
Mishra
,
N.
,
Gupta
,
A. S.
,
Dawar
,
J.
,
Kumar
,
A.
, and
Mitra
,
S.
,
2018
, “
Numerical and Experimental Study on Performance Enhancement of Darrieus Vertical Axis Wind Turbine With Wingtip Devices
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
121201
. 10.1115/1.4040506
82.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
83.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
. 10.2514/3.10041
84.
Nobile
,
R.
,
Vahdati
,
M.
,
Barlow
,
J.
, and
Mewburn-Crook
,
A.
,
2011
, “
Dynamic Stall for a Vertical Axis Wind Turbine in a two-Dimensional Study
,”
World Renewable Energy Congress
,
Linkoping, Sweden
, pp.
4225
4232
.
85.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2010
, “
Numerical Investigations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils
,”
Comput. Fluids
,
39
(
9
), pp.
1529
1541
. 10.1016/j.compfluid.2010.05.004
86.
Bedon
,
G.
,
De Betta
,
S.
, and
Benini
,
E.
,
2015
, “
A Computational Assessment of the Aerodynamic Performance of a Tilted Darrieus Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
145
, pp.
263
269
. 10.1016/j.jweia.2015.07.005
87.
Almohammadi
,
K. M.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2015
, “
Modeling Dynamic Stall of a Straight Blade Vertical Axis Wind Turbine
,”
J. Fluids Struct.
,
57
, pp.
144
158
. 10.1016/j.jfluidstructs.2015.06.003
88.
Gosselin
,
R.
,
Dumas
,
G.
, and
Boudreau
,
M.
,
2013
, “
Parametric Study of H-Darrieus Vertical-Axis Turbines Using uRANS Simulations
,”
21st Annual Conference of the CFD Society of Canada
,
Sherbrooke, Canada
,
May 6–9
.
89.
Lanzafame
,
R.
,
Mauro
,
S.
, and
Messina
,
M.
,
2014
, “
2D CFD Modeling of H-Darrieus Wind Turbines Using a Transition Turbulence Model
,”
Energy Procedia
,
45
, pp.
131
140
. 10.1016/j.egypro.2014.01.015
90.
Arab
,
A.
,
Javadi
,
M.
,
Anbarsooz
,
M.
, and
Moghiman
,
M.
,
2017
, “
A Numerical Study on the Aerodynamic Performance and the Self-Starting Characteristics of a Darrieus Wind Turbine Considering its Moment of Inertia
,”
Renew. Energy
,
107
, pp.
298
311
. 10.1016/j.renene.2017.02.013
91.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
.
92.
ANSYS Inc.
,
2009
, “
ANSYS FLUENT 12.0 Theory Guide
,”.
93.
Nini
,
M.
,
Motta
,
V.
,
Bindolino
,
G.
, and
Guardone
,
A.
,
2014
, “
Three-dimensional Simulation of a Complete Vertical Axis Wind Turbine Using Overlapping Grids
,”
J. Comput. Appl. Math.
,
270
, pp.
78
87
. 10.1016/j.cam.2014.02.020
94.
Chowdhury
,
A. M.
,
Akimoto
,
H.
, and
Hara
,
Y.
,
2016
, “
Comparative CFD Analysis of Vertical Axis Wind Turbine in Upright and Tilted Configuration
,”
Renew. Energy
,
85
, pp.
327
337
. 10.1016/j.renene.2015.06.037
95.
Daroczy
,
L.
,
Janiga
,
G.
,
Petrasch
,
K.
,
Webner
,
M. C.
, and
Thevenin
,
D.
,
2015
, “
Comparative Analysis of Turbulence Models for the Aerodynamic Simulation of H-Darrieus Rotors
,”
Energy
,
90
(
1
), pp.
680
690
. 10.1016/j.energy.2015.07.102
96.
Rogowski
,
K.
,
2018
, “
Numerical Studies on Two Turbulence Models and a Laminar Model for Aerodynamics of a Vertical-Axis Wind Turbine
,”
J. Mech. Sci. Technol.
,
32
(
5
), pp.
2079
2088
. 10.1007/s12206-018-0417-0
97.
Wang
,
Y.
,
Shen
,
S.
,
Li
,
G.
,
Huang
,
D.
, and
Zheng
,
Z.
,
2018
, “
Investigation on Aerodynamic Performance of Vertical Axis Wind Turbine With Different Series Airfoil Shapes
,”
Renew. Energy
,
126
, pp.
801
818
. 10.1016/j.renene.2018.02.095
98.
Castelli
,
M. R.
,
Englaro
,
A.
, and
Benini
,
E.
,
2011
, “
The Darrieus Wind Turbine: Proposal for a new Performance Prediction Model Based on CFD
,”
Energy
,
36
(
8
), pp.
4919
4934
. 10.1016/j.energy.2011.05.036
99.
Berg
,
D. E.
,
1972
,
Vertical-Axis Wind Turbines—The Current Status of an Old Technology
,
Sandia National Laboratories
,
Albuquerque, New Mexico
.
100.
Kirke
,
B. K.
,
1998
,
Evaluation of Self-Starting Vertical Axis Wind Turbines for Stand-Alone Applications
,
Griffith University Gold Coast
.
101.
Baker
,
J. R.
,
1983
, “
Features to aid or Enable Self Starting of Fixed Pitch low Solidity Vertical Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
15
(
1–3
), pp.
369
380
. 10.1016/0167-6105(83)90206-4
102.
Ebert
,
P. R.
, and
Wood
,
D. H.
,
1997
, “
Observations of the Starting Behaviour of a Small Horizontal Axis Wind Turbine
,”
Renew. Energy
,
12
(
3
), pp.
245
257
. 10.1016/S0960-1481(97)00035-9
103.
Worasinchai
,
S.
,
Ingram
,
G. L.
, and
Dominy
,
R. G.
,
2015
, “
The Physics of H-Darrieus Turbine Starting Behavior
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062605
. 10.1115/1.4031870
104.
Lunt
,
P. A.
,
2005
,
An Aerodynamic Model for a Vertical-Axis Wind Turbine
,
University of Durham, School of Engineering
,
Durham, UK
.
105.
Dominy
,
R. G.
,
Lunt
,
P.
,
Bickerdyke
,
A.
, and
Dominy
,
J.
,
2007
, “
Self-starting Capability of a Darrieus Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
1
), pp.
111
120
. 10.1243/09576509JPE340
106.
Hill
,
N.
,
Dominy
,
R.
,
Ingram
,
G.
, and
Dominy
,
J.
,
2009
, “
Darrieus Turbines: The Physics of Self-Starting
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
1
), pp.
21
29
. 10.1243/09576509JPE615
107.
Untaroiu
,
A.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Ribando
,
R. J.
,
2011
, “
Investigation of Self-Starting Capability of Vertical Axis Wind Turbines Using a Computational Fluid Dynamics Approach
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
041010
. 10.1115/1.4004705
108.
Rossetti
,
A.
, and
Pavesi
,
G.
,
2013
, “
Comparison of Different Numerical Approaches to the Study of the H-Darrieus Turbines Start-Up
,”
Renew. Energy
,
50
, pp.
7
19
. 10.1016/j.renene.2012.06.025
109.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2011
, “
Start-up Behavior of a Three-Bladed h-Darrieus VAWT: Experimental and Numerical Analysis
,”
Proceedings of ASME Turbo Expo 2011
,
Vancouver, Canada
, Paper No. GT2011-45882.
110.
Asr
,
M. T.
,
Nezhad
,
E. Z.
,
Mustapha
,
F.
, and
Wiriadidjaja
,
S.
,
2016
, “
Study on Start-Up Characteristics of H-Darrieus Vertical Axis Wind Turbines Comprising NACA 4-Digit Series Blade Airfoils
,”
Energy
,
112
, pp.
528
537
. 10.1016/j.energy.2016.06.059
111.
Chen
,
C. C.
, and
Kuo
,
C. H.
,
2013
, “
Effects of Pitch Angle and Blade Camber on Flow Characteristics and Performance of Small-Size Darrieus VAWT
,”
J. Vis.
,
16
(
1
), pp.
65
74
. 10.1007/s12650-012-0146-x
112.
Bhuyan
,
S.
, and
Biswas
,
A.
,
2014
, “
Investigations on Self-Starting and Performance Characteristics of Simple H and Hybrid H-Savonius Vertical Axis Wind Rotors
,”
Energy Convers. Manag.
,
87
, pp.
859
867
. 10.1016/j.enconman.2014.07.056
113.
Batista
,
N. C.
,
Melício
,
R.
,
Mendes
,
V. M. F.
,
Calderón
,
M.
, and
Ramiro
,
A.
,
2015
, “
On a Self-Start Darrieus Wind Turbine: Blade Design and Field Tests
,”
Renew. Sustain. Energy Rev.
,
52
, pp.
508
522
. 10.1016/j.rser.2015.07.147
114.
Zhu
,
J.
,
Huang
,
H.
, and
Shen
,
H.
,
2015
, “
Self-starting Aerodynamics Analysis of Vertical Axis Wind Turbine
,”
Adv. Mech. Eng.
,
7
(
12
), pp.
1
12
.
115.
Wernert
,
P.
,
Geissler
,
W.
,
Raffel
,
M.
, and
Kompenhans
,
J.
,
1996
, “
Experimental and Numerical Investigations of Dynamic Stall on a Pitching Airfoil
,”
AIAA J.
,
34
(
5
), pp.
982
989
. 10.2514/3.13177
116.
McCroskey
,
W. J.
,
Carr
,
L. W.
, and
McAlister
,
K. W.
,
1976
, “
Dynamic Stall Experiments on Oscillating Airfoils
,”
AIAA J.
,
14
(
1
), pp.
57
63
. 10.2514/3.61332
117.
Leishman
,
J. G.
,
1990
, “
Dynamic Stall Experiments on the NACA 23012 Aerofoil
,”
Exp. Fluids
,
9
(
1–2
), pp.
49
58
. 10.1007/BF00575335
118.
Laneville
,
A.
, and
Vittecoq
,
P.
,
1986
, “
Dynamic Stall: The Case of the Vertical Axis Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
108
(
2
), pp.
140
145
. 10.1115/1.3268081
119.
Simão Ferreira
,
C.
,
Van Kuik
,
G.
,
Van Bussel
,
G.
, and
Scarano
,
F.
,
2009
, “
Visualization by PIV of Dynamic Stall on a Vertical Axis Wind Turbine
,”
Exp. Fluids
,
46
(
1
), pp.
97
108
. 10.1007/s00348-008-0543-z
120.
Larsen
,
J. W.
,
Nielsen
,
S. R. K.
, and
Krenk
,
S.
,
2007
, “
Dynamic Stall Model for Wind Turbine Airfoils
,”
J. Fluids Struct.
,
23
(
7
), pp.
959
982
. 10.1016/j.jfluidstructs.2007.02.005
121.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
,
1989
, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
,
34
(
3
), pp.
3
17
. 10.4050/JAHS.34.3
122.
Yang
,
Y.
,
Li
,
C.
,
Zhang
,
W.
,
Guo
,
X.
, and
Yuan
,
Q.
,
2017
, “
Investigation on Aerodynamics and Active Flow Control of a Vertical Axis Wind Turbine With Flapped Airfoil
,”
J. Mech. Sci. Technol.
,
31
(
4
), pp.
1645
1655
. 10.1007/s12206-017-0312-0
123.
Magill
,
J. C.
, and
Mcmanus
,
K. R.
,
1998
, “
Control of Dynamic Stall Using Pulsed Vortex Generators Jet
,”
36th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 12–15
, Paper No. AIAA-98-0675.
124.
Joo
,
W.
,
Lee
,
B.-S.
,
Yee
,
K.
, and
Lee
,
D.-H.
,
2006
, “
Combining Passive Control Method for Dynamic Stall Control
,”
J. Aircr.
,
43
(
4
), pp.
1120
1128
. 10.2514/1.17957
125.
Carr
,
L. W.
, and
Mcalister
,
K. W.
,
1983
, “
The Effect of a Leading-Edge Slat on the Dynamic Stall of an Oscillating Airfoil
,”
AIAA Aircraft Design, Systems and Technology Meeting
,
Fort Worth, TX
,
Oct. 17–19
.
126.
Karim
,
M. A.
, and
Acharya
,
M.
,
1994
, “
Suppression of Dynamic-Stall Vortices Over Pitching Airfoils by Leading-Edge Suction
,”
AIAA J.
,
32
(
8
), pp.
1647
1655
. 10.2514/3.12155
127.
Gerontakos
,
P.
, and
Lee
,
T.
,
2006
, “
Dynamic Stall Flow Control via a Trailing-Edge Flap
,”
AIAA J.
,
44
(
3
), pp.
469
480
. 10.2514/1.17263
128.
Yen
,
J.
, and
Ahmed
,
N. A.
,
2013
, “
Enhancing Vertical Axis Wind Turbine by Dynamic Stall Control Using Synthetic Jets
,”
J. Wind Eng. Ind. Aerodyn.
,
114
, pp.
12
17
. 10.1016/j.jweia.2012.12.015
129.
Frunzulica
,
F.
,
Dumitrescu
,
H.
,
Dumitrache
,
A.
, and
Suatean
,
B.
,
2013
, “
Control of Dynamic Stall Phenomenon for Vertical Axis Wind Turbine
,”
AIP Conf. Proc.
,
1558
, pp.
1257
1260
. 10.1063/1.4825739
130.
Greenblatt
,
D.
,
Ben-Harav
,
A.
, and
Mueller-Vahl
,
H.
,
2014
, “
Dynamic Stall Control on a Vertical-Axis Wind Turbine Using Plasma Actuators
,”
AIAA J.
,
52
(
2
), pp.
456
462
. 10.2514/1.J052776
131.
Mukherjee
,
P.
,
Jain
,
S.
, and
Saha
,
U. K.
,
2016
, “
Influence of Tip Speed Ratio on the Flow Behaviour of a Darrieus Wind Turbine
,”
6th International and 43rd National Conference on Fluid Mechanics and Fluid Power
,
MNNITA
,
Allahabad, India
,
Dec. 15–17
.
132.
Amet
,
E.
,
MAitre
,
T.
,
Pellone
,
C.
, and
Achard
,
J.-L.
,
2009
, “
2D Numerical Simulations of Blade-Vortex Interaction in a Darrieus Turbine
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111103
. 10.1115/1.4000258
133.
McNaughton
,
J.
,
Billard
,
F.
, and
Revell
,
A.
,
2014
, “
Turbulence Modelling of low Reynolds Number Flow Effects Around a Vertical Axis Turbine at a Range of tip-Speed Ratios
,”
J. Fluids Struct.
,
47
, pp.
124
138
. 10.1016/j.jfluidstructs.2013.12.014
134.
Chen
,
Y.
, and
Lian
,
Y.
,
2015
, “
Numerical Investigation of Vortex Dynamics in an H-Rotor Vertical Axis Wind Turbine
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
21
32
. 10.1080/19942060.2015.1004790
135.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Persico
,
G.
,
Dossena
,
V.
, and
Battisti
,
L.
,
2017
, “
Detailed Analysis of the Wake Structure of a Straight-Blade H-Darrieus Wind Turbine by Means of Wind Tunnel Experiments and Computational Fluid Dynamics Simulations
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032604
. 10.1115/1.4037906
136.
Battisti
,
L.
,
Zanne
,
L.
,
Dell’Anna
,
S.
,
Dossena
,
V.
,
Persico
,
G.
, and
Paradiso
,
B.
,
2011
, “
Aerodynamic Measurements on a Vertical Axis Wind Turbine in a Large Scale Wind Tunnel
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031201
. 10.1115/1.4004360
137.
Korobenko
,
A.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2014
, “
Aerodynamic Simulation of Vertical-Axis Wind Turbines
,”
ASME J. Appl. Mech.
,
81
(
2
), p.
021011
. 10.1115/1.4024415
138.
Ikeda
,
K.
,
Kuwana
,
A.
,
Nagata
,
Y.
, and
Kawam
,
T.
,
2017
, “
Numerical Simulation of Interaction Between Two Wind Turbines of Vertical Axis
,”
Nat. Sci. Rep. Ochanomizu Univ.
,
67
(
2
), pp.
33
41
.
139.
Islam
,
M.
,
Ting
,
D. S.-K.
, and
Fartaj
,
A.
,
2007
, “
Desirable Airfoil Features for Smaller-Capacity Straight-Bladed VAWT
,”
Wind Eng.
,
31
(
3
), pp.
165
196
. 10.1260/030952407781998800
140.
Islam
,
M.
,
Amin
,
M. R.
,
Ting
,
D. S. K.
, and
Fartaj
,
A.
,
2008
, “
Selection of Airfoils for Straight-Bladed Vertical Axis Wind Turbines Based on Desirable Aerodynamic Characteristics
,”
ASME International Mechanical Engineering Congress and Exposition
,
Boston, MA
,
Oct. 31–Nov. 6
, Paper No. IMECE2008-66027.
141.
Mohamed
,
M. H.
,
2012
, “
Performance Investigation of H-Rotor Darrieus Turbine With new Airfoil Shapes
,”
Energy
,
47
(
1
), pp.
522
530
. 10.1016/j.energy.2012.08.044
142.
Claessens
,
M. C.
,
2006
,
The Design and Testing of Airfoils for Application in Small Vertical Axis Wind Turbines
,
Delft University of Technology
,
The Netherlands
.
143.
Danao
,
L. A.
,
Qin
,
N.
, and
Howell
,
R.
,
2012
, “
A Numerical Study of Blade Thickness and Camber Effects on Vertical Axis Wind Turbines
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
7
), pp.
867
881
. 10.1177/0957650912454403
144.
Subramanian
,
A.
,
Yogesh
,
S. A.
,
Sivanandan
,
H.
,
Giri
,
A.
,
Vasudevan
,
M.
,
Mugundhan
,
V.
, and
Velamati
,
R. K.
,
2017
, “
Effect of Airfoil and Solidity on Performance of Small Scale Vertical Axis Wind Turbine Using Three Dimensional CFD Model
,”
Energy
,
133
, pp.
179
190
. 10.1016/j.energy.2017.05.118
145.
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2015
, “
Performance Prediction of Darrieus Turbine Through Numerical Analysis
,”
ASME Gas Turbine India Conference
,
Hyderabad, India
,
December 2–3
, Paper No. GTINDIA2015-1266.
146.
Bausas
,
M. D.
,
Angelo
,
L.
, and
Danao
,
M.
,
2015
, “
The Aerodynamics of a Camber-Bladed Vertical Axis Wind Turbine in Unsteady Wind
,”
Energy
,
93
(
part-1
), pp.
1155
1164
. 10.1016/j.energy.2015.09.120
147.
Qamar
,
S. B.
, and
Janajreh
,
I.
,
2017
, “
Investigation of Effect of Cambered Blades on Darrieus VAWTs
,”
Energy Procedia
,
105
, pp.
537
543
. 10.1016/j.egypro.2017.03.353
148.
Kjellin
,
J.
,
Bülow
,
F.
,
Eriksson
,
S.
,
Deglaire
,
P.
,
Leijon
,
M.
, and
Bernhoff
,
H.
,
2011
, “
Power Coefficient Measurement on a 12 kW Straight Bladed Vertical Axis Wind Turbine
,”
Renew. Energy
,
36
(
11
), pp.
3050
3053
. 10.1016/j.renene.2011.03.031
149.
Sabaeifard
,
P.
,
Razzaghi
,
H.
, and
Forouzandeh
,
A.
,
2012
, “
Determination of Vertical Axis Wind Turbines Optimal Configuration Through CFD Simulations
,”
International Conference on Future Environment and Energy
,
Singapore
, vol.
28
, pp.
109
113
.
150.
Brusca
,
S.
,
Lanzafame
,
R.
, and
Messina
,
M.
,
2014
, “
Design of a Vertical-Axis Wind Turbine: How the Aspect Ratio Affects the Turbine’s Performance
,”
Int. J. Energy Environ. Eng.
,
5
(
4
), pp.
333
340
. 10.1007/s40095-014-0129-x
151.
Eboibi
,
O.
,
Danao
,
L. A. M.
, and
Howell
,
R. J.
,
2016
, “
Experimental Investigation of the Influence of Solidity on the Performance and Flow Field Aerodynamics of Vertical Axis Wind Turbines at low Reynolds Numbers
,”
Renewable Energy
,
92
, pp.
474
483
. 10.1016/j.renene.2016.02.028
152.
Castelli
,
M. R.
,
De Betta
,
S.
, and
Benini
,
E.
,
2012
, “
Effect of Blade Number on a Straight-Bladed Vertical-Axis Darreius Wind Turbine
,”
World Acad. Sci. Eng. Technol.
,
6
(
1
), pp.
256
262
.
153.
Li
,
Q.
,
Maeda
,
T.
,
Kamada
,
Y.
,
Murata
,
J.
,
Furukawa
,
K.
, and
Yamamoto
,
M.
,
2015
, “
Effect of Number of Blades on Aerodynamic Forces on a Straight-Bladed Vertical Axis Wind Turbine
,”
Energy
,
90
(
part-1
), pp.
784
795
. 10.1016/j.energy.2015.07.115
154.
Fiedler
,
A. J.
, and
Tullis
,
S.
,
2009
, “
Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine
,”
Wind Eng.
,
33
(
3
), pp.
237
246
. 10.1260/030952409789140955
155.
Rezaeiha
,
A.
,
Kalkman
,
I.
, and
Blocken
,
B.
,
2017
, “
Effect of Pitch Angle on Power Performance and Aerodynamics of a Vertical Axis Wind Turbine
,”
Appl. Energy
,
197
, pp.
132
150
. 10.1016/j.apenergy.2017.03.128
156.
Rezaeihaa
,
A.
,
Montazeria
,
H.
, and
Blocken
,
B.
,
2018
, “
Characterization of Aerodynamic Performance of Vertical Axis Wind Turbines: Impact of Operational Parameters
,”
Energy Convers. Manag.
,
169
, pp.
45
77
. 10.1016/j.enconman.2018.05.042
157.
Somoano
,
M.
, and
Huera-Huarte
,
F. J.
,
2019
, “
The Effect of Blade Pitch on the Flow Dynamics Inside the Rotor of a Three Straight Bladed Cross-Flow Turbine
,”
Proc. Inst. Mech. Eng., Part M
,
233
(
3
), pp.
868
878
. 10.1177/1475090218792331
158.
Chen
,
J.
,
Yang
,
H.
,
Yang
,
M.
, and
Xu
,
H.
,
2015
, “
The Effect of the Opening Ratio and Location on the Performance of a Novel Vertical Axis Darrieus Turbine
,”
Energy
,
89
, pp.
819
834
. 10.1016/j.energy.2015.05.136
159.
Wang
,
Y.
,
Sun
,
X.
,
Dong
,
X.
,
Zhu
,
B.
,
Huang
,
D.
, and
Zheng
,
Z.
,
2016
, “
Numerical Investigation on Aerodynamic Performance of a Novel Vertical Axis Wind Turbine With Adaptive Blades
,”
Energy Convers. Manag.
,
108
, pp.
275
286
. 10.1016/j.enconman.2015.11.003
160.
Zamani
,
M.
,
Maghrebi
,
M. J.
, and
Varedi
,
S. R.
,
2016
, “
Starting Torque Improvement Using J-Shaped Straight-Bladed Darrieus Vertical Axis Wind Turbine by Means of Numerical Simulation
,”
Renewable Energy
,
95
, pp.
109
126
. 10.1016/j.renene.2016.03.069
161.
Chen
,
J.
,
Liu
,
P.
,
Xu
,
H.
,
Chen
,
L.
,
Yang
,
M.
, and
Yang
,
L.
,
2017
, “
A Detailed Investigation of a Novel Vertical Axis Darrieus Wind Rotor With Two Sets of Blades
,”
J. Renew. Sustain. Energy
,
9
, p.
013307
. 10.1063/1.4977004
162.
Didane
,
D. H.
,
Rosly
,
N.
,
Zulkafli
,
M. F.
, and
Shamsudin
,
S. S.
,
2017
, “
Performance Evaluation of a Novel Vertical Axis Wind Turbine With Coaxial Contra- Rotating Concept
,”
Renew. Energy
,
115
, pp.
353
361
. 10.1016/j.renene.2017.08.070
163.
Naccache
,
G.
, and
Paraschivoiu
,
M.
,
2017
, “
Development of the Dual Vertical Axis Wind Turbine Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
139
(
12
), p.
121105
. 10.1115/1.4037490
164.
Arpino
,
F.
,
Scungio
,
M.
, and
Cortellessa
,
G.
,
2018
, “
Numerical Performance Assessment of an Innovative Darrieus-Style Vertical Axis Wind Turbine With Auxiliary Straight Blades
,”
Energy Convers. Manag.
,
171
, pp.
769
777
. 10.1016/j.enconman.2018.06.028
165.
Carrigan
,
T. J.
,
Dennis
,
B. H.
,
Han
,
Z. X.
, and
Wang
,
B. P.
,
2012
, “
Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution
,”
ISRN Renew. Energy
,
2012
, pp.
1
16
. 10.5402/2012/528418
166.
Bedon
,
G.
,
Castelli
,
M. R.
, and
Benini
,
E.
,
2013
, “
Optimization of a Darrieus Vertical-Axis Wind Turbine Using Blade Element e Momentum Theory and Evolutionary Algorithm
,”
Renew. Energy
,
59
, pp.
184
192
. 10.1016/j.renene.2013.03.023
167.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Energy-Yield-Based Optimization of an H-Darrieus Wind Turbine
,”
ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, Paper No. GT2012-69892.
168.
Jafaryar
,
M.
,
Kamrani
,
R.
,
Gorji-bandpy
,
M.
,
Hatami
,
M.
, and
Ganji
,
D. D.
,
2016
, “
Numerical Optimization of the Asymmetric Blades Mounted on a Vertical Axis Cross-Flow Wind Turbine
,”
Int. Commun. Heat Mass Transf.
,
70
, pp.
93
104
. 10.1016/j.icheatmasstransfer.2015.12.003
169.
Li
,
C.
,
Xiao
,
Y.
,
Xu
,
Y.
,
Peng
,
Y.
,
Hu
,
G.
, and
Zhu
,
S.
,
2018
, “
Optimization of Blade Pitch in H-Rotor Vertical Axis Wind Turbines Through Computational Fluid Dynamics Simulations
,”
Appl. Energy
,
212
, pp.
1107
1125
. 10.1016/j.apenergy.2017.12.035
170.
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Pitch Optimization in Small-Size Darrieus Wind Turbines
,”
Energy Procedia
,
81
, pp.
122
132
. 10.1016/j.egypro.2015.12.067
171.
Chen
,
W.
,
Chen
,
C.
,
Huang
,
C.
, and
Hwang
,
C.
,
2017
, “
Power Output Analysis and Optimization of Two Straight-Bladed Vertical-Axis Wind Turbines
,”
Appl. Energy
,
185
(
part-1
), pp.
223
232
. 10.1016/j.apenergy.2016.10.076
172.
Ferreira
,
C. S.
, and
Geurts
,
B.
,
2015
, “
Aerofoil Optimization for Vertical-Axis Wind Turbines
,”
Wind Energy
,
18
(
8
), pp.
1371
1385
. 10.1002/we.1762
173.
Bedon
,
G.
,
De Betta
,
S.
, and
Benini
,
E.
,
2016
, “
Performance-optimized Airfoil for Darrieus Wind Turbines
,”
Renew. Energy
,
94
, pp.
328
340
. 10.1016/j.renene.2016.03.071
174.
Liang
,
C.
, and
Li
,
H.
,
2018
, “
Aerofoil Optimization for Improving the Power Performance of a Vertical Axis Wind Turbine Using Multiple Streamtube Model and Genetic Algorithm
,”
R. Soc. Open Sci.
,
5
(
7
), p.
180540
. 10.1098/rsos.180540
175.
Ma
,
N.
,
Lei
,
H.
,
Han
,
Z.
,
Zhou
,
D.
,
Bao
,
Y.
,
Zhang
,
K.
,
Zhou
,
L.
, and
Chen
,
C.
,
2018
, “
Airfoil Optimization to Improve Power Performance of a High-Solidity Vertical Axis Wind Turbine at a Moderate tip Speed Ratio
,”
Energy
,
150
, pp.
236
252
. 10.1016/j.energy.2018.02.115
176.
Migliore
,
P. G.
,
Wolfe
,
W. P.
, and
Fanucci
,
J. B.
,
1980
, “
Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics
,”
J. Energy
,
4
(
2
), pp.
49
55
. 10.2514/3.62459
177.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2014
, “
Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines
,”
ASME J. Turbomach.
,
137
(
1
), p.
011006
. 10.1115/1.4028245
178.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J. M.
,
Peiró
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines
,”
Energy Convers. Manag.
,
106
, pp.
373
384
. 10.1016/j.enconman.2015.09.053
179.
Bianchini
,
A.
,
Carnevale
,
E. A.
, and
Ferrari
,
L.
,
2011
, “
A Model to Account for the Virtual Camber Effect in the Performance Prediction of an H-Darrieus VAWT Using the Momentum Models
,”
Wind Eng.
,
35
(
4
), pp.
465
482
. 10.1260/0309-524X.35.4.465
180.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J. M.
,
Peiró
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part I: Flow Curvature Effects
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032602
. 10.1115/1.4031269
181.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Virtual Incidence Effect on Rotating Airfoils in Darrieus Wind Turbines
,”
Energy Convers. Manag.
,
111
, pp.
329
338
. 10.1016/j.enconman.2015.12.056
182.
Mertens
,
S.
,
Kuik
,
G. V.
, and
Bussel
,
G. V.
,
2003
, “
Performance of an H-Darrieus in the Skewed Flow on a Roof
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
433
440
. 10.1115/1.1629309
183.
Mertens
,
S.
,
Kuik
,
G. V.
, and
Bussel
,
G. V.
,
2003
, “
Performance of a High Tip Speed Ratio H-Darrieus in the Skewed Flow on a Roof
,”
41st Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
.
184.
Scheurich
,
F.
, and
Brown
,
R. E.
,
2011
, “
Vertical-axis Wind Turbines in Oblique Flow: Sensitivity to Rotor Geometry
,”
European Wind Energy Conference and Exhibition 2011
,
Brussels, Belgium
,
Mar. 14–17
, pp.
222
225
.
185.
Orlandi
,
A.
,
Collu
,
M.
,
Zanforlin
,
S.
, and
Shires
,
A.
,
2015
, “
3D URANS Analysis of a Vertical Axis Wind Turbine in Skewed Flows
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
77
84
. 10.1016/j.jweia.2015.09.010
186.
Ferreira
,
C. J. S.
,
Bussel
,
G. J. W. V.
, and
Kuik
,
G. A. M. V.
,
2006
, “
Wind Tunnel Hotwire Measurements, Flow Visualization and Thrust Measurement of a VAWT in Skew
,”
ASME J. Sol. Energy Eng.
,
128
(
4
), pp.
487
497
. 10.1115/1.2349550
187.
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
An Improved Model for the Performance Estimation of an H-Darrieus Wind Turbine in Skewed Flow
,”
Wind Eng.
,
36
(
6
), pp.
667
686
. 10.1260/0309-524X.36.6.667
You do not currently have access to this content.