Abstract

Technological advancement is specifically identified by the usage of energy. The energy requirement is increasing because of the exponential population rise, increased industrial activities, and subsequent accelerated economic activities in both urban and suburban areas. The traditional power sources are becoming unsustainable as energy demand and induction of new sources for augmenting the energy need are lopsided. Additionally, traditional energy sources cause pollution, natural hazards, and more importantly, it is uneconomical. Due to these reasons, it becomes compelling to look for alternative sources of energy. Hydropower generation is reliable, non-polluting to a large extent, and a cheaper source of electrical energy. However, the conventional large hydropower projects, especially with reservoir components, are being opposed worldwide for social, environmental, economic, and safety reasons. Therefore, electricity production from free-flowing water may present a viable choice. Here, the free-flowing river water current is used to drive vertical-axis turbines preferably, Savonius rotors which are ideally built for wind energy conversion systems (WECS). The rotor is directly coupled to electric generators, and the scheme presents a typical variable voltage and variable frequency system similar to that of WECS except that the working force is due to water rather than wind. The use of the Savonius rotor for hydrokinetic power generation is uncommon; however, increased exploitation of this methodology may help in augmenting future energy need. This paper reviews the Savonius rotor and its possible application for hydrokinetic power generation; the merits and demerits of such schemes are clearly outlined.

References

1.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
. 10.1115/1.4030399
2.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
. 10.1115/1.4036051
3.
Mishra
,
N.
,
Gupta
,
A. S.
,
Dawar
,
J.
,
Kumar
,
A.
, and
Mitra
,
S.
,
2018
, “
Numerical and Experimental Study on Performance Enhancement of Darrieus Vertical Axis Wind Turbine With Wingtip Devices
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
121201
. 10.1115/1.4040506
4.
Chen
,
J.
,
Shen
,
X.
,
Zhu
,
X.
, and
Du
,
Z.
,
2019
, “
A Study on the Capability of Backward Swept Blades to Mitigate Loads of Wind Turbines in Shear Flow
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
081201
. 10.1115/1.4042716
5.
Mohammed
,
A. A.
,
Ouakad
,
H. M.
,
Sahin
,
A. Z.
, and
Bahaidarah
,
H. M.
,
2019
, “
Vertical Axis Wind Turbine Aerodynamics: Summary and Review of Momentum Models
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
050801
. 10.1115/1.4042643
6.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
. 10.1115/1.4030109
7.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
. 10.1115/1.4037757
8.
Beyhaghi
,
S.
, and
Amano
,
R.
,
2019
, “
Multi-Variable Analysis of Aerodynamic Forces on Slotted Airfoils for Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051214
. 10.1115/1.4042914
9.
Jian
,
C.
,
Kumbernuss
,
J.
,
Linhua
,
Z.
,
Lin
,
L.
, and
Hongxing
,
Y.
,
2012
, “
Influence of Phase-Shift and Overlap Ratio on Savonius Wind Turbine's Performance
,”
ASME J. Sol. Energy
,
134
(
1
), p.
011016
. 10.1115/1.4004980
10.
Zingman
,
A. O.
,
2007
,
Optimization of a Savonius Rotor Vertical-Axis Wind Turbine for use in Water Pumping Systems in Rural Honduras
, B. Sc Degree,
Massachusetts Institute of Technology
,
Cambridge, MA
.
11.
Guney
,
M. S.
, and
Kaygusuz
,
K.
,
2010
, “
Hydrokinetic Energy Conversion Systems: A Technology Status Review
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2996
3004
. 10.1016/j.rser.2010.06.016
12.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
. 10.1115/1.4030448
13.
Simonds
,
M. H.
, and
Bodek
,
A.
,
1964
,
Performance Test of a Savonius Rotor
,
Brace Research Institute, Macdonald College of McGill University
,
Quebec
.
14.
Alexander
,
A. J.
, and
Holownia
,
B. P.
,
1978
, “
Wind Tunnel Tests on a Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
3
(
4
), pp.
343
351
. 10.1016/0167-6105(78)90037-5
15.
Sheldahl
,
R. E.
,
Feltz
,
L. V.
, and
Blackwell
,
B. F.
,
1978
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,”
J. Energy
,
2
(
3
), pp.
160
164
. 10.2514/3.47966
16.
Shankar
,
P. N.
,
1979
, “
Development of Vertical Axis Wind Turbines
,”
Proc. Indian Acad. Sci. Sect. C
,
2
(
1
), pp.
49
66
. 10.1007/BF02899755
17.
Morcos
,
S. M.
,
Khalafallah
,
M. G.
, and
Heikel
,
H. A.
,
1981
, “
The Effect of Shielding on the Aerodynamic Performance of Savonius Wind Turbines
,”
16th Intersociety Energy Conversion Engineering Conference
,
Atlanta, GA
,
Aug. 9–14
, pp.
2037
2040
.
18.
Mojola
,
O. O.
,
1985
, “
On the Aerodynamic Design of the Savonius Windmill Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
21
(
2
), pp.
223
231
. 10.1016/0167-6105(85)90005-4
19.
Ogawa
,
T.
, and
Haruo
,
Y.
,
1986
, “
The Effects of a Deflecting Plate and Rotor end Plates on Performances of Savonius-Type Wind Turbine
,”
Bull. JSME
,
29
(
253
), pp.
2115
2121
. 10.1299/jsme1958.29.2115
20.
Ogawa
,
T.
,
Yoshida
,
H.
, and
Yokota
,
Y.
,
1989
, “
Development of Rotational Speed Control Systems for a Savonius-Type Wind Turbine
,”
ASME J. Fluid Eng.
,
111
(
1
), pp.
53
58
. 10.1115/1.3243598
21.
Reupke
,
P.
, and
Probert
,
S. D.
,
1991
, “
Slatted-Blade Savonius Wind-Rotors
,”
Appl. Energy
,
40
(
1
), pp.
65
75
. 10.1016/0306-2619(91)90051-X
22.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
277
292
. 10.1016/0167-6105(92)90380-S
23.
Shaughnessy
,
B. M.
, and
Probert
,
S. D.
,
1992
, “
Partially-Blocked Savonius Rotor
,”
Appl. Energy
,
43
(
4
), pp.
239
249
. 10.1016/0306-2619(92)90024-6
24.
Huda
,
M. D.
,
Selim
,
M. A.
,
Islam
,
A.
, and
Islam
,
M. Q.
,
1992
, “
The Performance of an S-Shaped Savonius Rotor With a Deflecting Plate
,”
RERIC Int. Energy J.
,
14
(
1
), pp.
25
32
.
25.
Rabah
,
K. V. O.
, and
Osawa
,
B. M.
,
1996
, “
Design and Field Testing Savonius Wind Pump in East Africa
,”
Int. J. Ambient Energy
,
17
(
2
), pp.
89
94
. 10.1080/01430750.1996.9675223
26.
Shikha
,
T. S.
, Bhatti
, and
Kothari
,
D. P.
,
2003
, “
Wind Energy Conversion Systems as a Distributed Source of Generation
,”
ASCE J. Energy Eng.
,
129
(
3
), pp.
69
80
.
27.
Menet
,
J.-L.
,
2004
, “
A Double-Step Savonius Rotor for Local Production of Electricity: A Design Study
,”
Renewable Energy
,
29
(
11
), pp.
1843
1862
. 10.1016/j.renene.2004.02.011
28.
Grinspan
,
A. S.
, and
Saha
,
U. K.
,
2004
, “
Experimental Investigation of Twisted Bladed Savonius Wind Turbine Rotor
,”
Int. Energy J.
,
5
(
1
), pp.
1
9
.
29.
Cochran
,
B.
,
Banks
,
D.
, and
Taylor
,
S.
,
2004
, “
A Three-Tiered Approach for Designing and Evaluating Performance Characteristics of Novel WECS
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 5–8
, p.
1362
.
30.
Hayashi
,
T.
,
Li
,
Y.
, and
Hara
,
Y.
,
2005
, “
Wind Tunnel Tests on a Different Phase Three-Stage Savonius Rotor
,”
JSME Int. J., Ser. B
,
48
(
1
), pp.
9
16
. 10.1299/jsmeb.48.9
31.
Saha
,
U. K.
, and
Rajkumar
,
M. J.
,
2006
, “
On the Performance Analysis of Savonius Rotor With Twisted Blades
,”
Renewable Energy
,
31
(
11
), pp.
1776
1788
. 10.1016/j.renene.2005.08.030
32.
Irabu
,
K.
, and
Roy
,
J. N.
,
2007
, “
Characteristics of Wind Power on Savonius Rotor Using a Guide-Box Tunnel
,”
Exp. Therm. Fluid. Sci.
,
32
(
2
), pp.
580
586
. 10.1016/j.expthermflusci.2007.06.008
33.
Saha
,
U. K.
,
Thotla
,
S.
, and
Maity
,
D.
,
2008
, “
Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
8–9
), pp.
1359
1375
. 10.1016/j.jweia.2008.03.005
34.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Investigations on a Single Stage, Two Stages and Three Stages Conventional Savonius Rotor
,”
Int. J. Energy Res.
,
32
(
10
), pp.
877
895
. 10.1002/er.1399
35.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Investigations on the Effect of Overlap Ratio and Blade Edge Conditions on the Performance of Conventional Savonius Rotor
,”
Wind Eng.
,
32
(
2
), pp.
163
178
. 10.1260/030952408784815826
36.
Altan
,
B. D.
, and
Atılgan
,
M.
,
2008
, “
An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3425
3432
. 10.1016/j.enconman.2008.08.021
37.
Nakajima
,
M.
,
Iio
,
S.
, and
Ikeda
,
V.
,
2008
, “
Performance of Savonius Rotor for the Environmentally Friendly Hydraulic Turbine
,”
J. Fluid Sci. Technol.
,
3
(
3
), pp.
420
429
. 10.1299/jfst.3.420
38.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Performance Tests on Helical Savonius Rotors
,”
Renewable Energy
,
34
(
3
), pp.
521
529
. 10.1016/j.renene.2008.06.002
39.
Zhao
,
Z.
,
Zheng
,
Y.
,
Xu
,
X.
,
Liu
,
W.
, and
Hu
,
G.
,
2009
, “
Research on the Improvement of the Performance of the Savonius Rotor Based on the Numerical Study
,”
SUPERGEN'09, International Conference on Sustainable Power Generation and Supply
,
Nanjing, China
,
Apr. 6–7
,
IEEE
,
New York
, pp.
1
6
.
40.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2009
, “
Optimal Performance of a Savonius Turbine Using Frontal Guiding Plates
,”
Proceedings of the 14th International Conference on Modelling Fluid Flow (CMFF'09)
,
Budapest, Hungary
,
Sept. 9–12
, pp.
871
878
.
41.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
. 10.1016/j.apenergy.2008.09.019
42.
Yonghai
,
H.
,
Zhengmin
,
T.
, and
Shanshan
,
W.
,
2009
, “
A New Type of VAWT and Blade Optimization
,”
International Technology and Innovation Conference 2009 (ITIC 2009)
,
Xi'an China
,
Oct. 12–14
.
43.
Altan
,
B. D.
, and
Atılgan
,
M.
,
2010
, “
The Use of a Curtain Design to Increase the Performance Level of a Savonius Wind Rotor
,”
Renewable Energy
,
35
(
4
), pp.
821
829
. 10.1016/j.renene.2009.08.025
44.
D'Alessandro
,
V.
,
Montelpare
,
S.
,
Ricci
,
R.
, and
Secchiaroli
,
A.
,
2010
, “
Unsteady Aerodynamics of a Savonius Wind Rotor: A New Computational Approach for the Simulation of Energy Performance
,”
Energy
,
35
(
8
), pp.
3349
3363
. 10.1016/j.energy.2010.04.021
45.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2010
, “
Optimization of Savonius Turbines Using an Obstacle Shielding the Returning Blade
,”
Renewable Energy
,
35
(
11
), pp.
2618
2626
. 10.1016/j.renene.2010.04.007
46.
Yaakob
,
O. B.
,
Tawi
,
K. B.
, and
Suprayogi Sunanto
,
D. T.
,
2010
, “
Computer Simulation Studies on the Effect Overlap Ratio for Savonius Type Vertical Axis Marine Current Turbine
,”
Int. J. Eng., Trans. A
,
23
(
1
), pp.
79
88
.
47.
Kang
,
C.
,
Zhang
,
F.
, and
Mao
,
X.
,
2010
, “
Comparison Study of a Vertical-Axis Spiral Rotor and a Conventional Savonius Rotor
,”
2010 Asia-Pacific Power and Energy Engineering Conference
,
Chengdu, China
,
Mar. 28–31
,
IEEE
,
New York
, pp.
1
4
.
48.
Emmanuel
,
B.
, and
Jun
,
W.
,
2011
, “
Numerical Study of a Six-Bladed Savonius Wind Turbine
,”
ASME J. Sol. Energy
,
133
(
4
), p.
044503
. 10.1115/1.4004549
49.
Golecha
,
K.
,
Eldho
,
T. I.
, and
Prabhu
,
S. V.
,
2011
, “
Influence of the Deflector Plate on the Performance of Modified Savonius Water Turbine
,”
Appl. Energy
,
88
(
9
), pp.
3207
3217
. 10.1016/j.apenergy.2011.03.025
50.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Energy Convers. Manage.
,
52
(
1
), pp.
236
242
. 10.1016/j.enconman.2010.06.070
51.
Abraham
,
J. P.
,
Plourde
,
B. D.
,
Mowry
,
G. S.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
2012
, “
Summary of Savonius Wind Turbine Development and Future Applications for Small-Scale Power Generation
,”
J. Renewable Sustainable Energy
,
4
(
4
), p.
042703
. 10.1063/1.4747822
52.
Mahmoud
,
N. H.
,
2012
, “
An Experimental Study on Improvement of Savonius Rotor Performance
,”
Alexandria Eng. J.
,
51
(
1
), pp.
19
25
. 10.1016/j.aej.2012.07.003
53.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
. 10.1016/j.rser.2012.02.056
54.
Ghatage
,
S. V.
, and
Joshi
,
J. B.
,
2012
, “
Optimisation of Vertical Axis Wind Turbine: CFD Simulations and Experimental Measurements
,”
Can. J. Chem. Eng.
,
90
(
5
), pp.
1186
1201
. 10.1002/cjce.20617
55.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
, pp.
578
585
. 10.1016/j.renene.2013.06.009
56.
Song
,
L.
,
Yang
,
Z. X.
,
Deng
,
R. T.
, and
Yang
,
X. G.
,
2013
, “
Performance and Structure Optimization for a New Type of Vertical Axis Wind Turbine
,”
Proceedings of the 2013 International Conference on Advanced Mechatronic Systems
,
Luoyang, China
,
Sept. 25–27
,
IEEE
,
New York
, pp.
687
692
.
57.
Sukanta
,
R.
, and
Saha
,
U. K.
,
2013
, “
Computational Study to Assess the Influence of Overlap Ratio on Static Torque Characteristics of a Vertical Axis Wind Turbine
,”
Procedia Eng.
,
51
, pp.
694
702
. 10.1016/j.proeng.2013.01.099
58.
Ibrahim
,
M.
,
Driss
,
Z.
, and
Abid
,
M. S.
,
2014
, “
Performance Analysis of a Water Savonius Rotor: Effect of the Internal Overlap
,”
Sustainable Energy
,
2
(
4
), pp.
121
125
. 10.12691/rse-2-4-1
59.
Roy
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2014
, “
Aerodynamic Performance Evaluation of a Novel Savonius-Style Wind Turbine Under an Oriented Jet
,”
ASME 2014 Gas Turbine India Conference
,
New Delhi, India
,
Dec. 15–17
, p.
V001T08A001
.
60.
Banerjee
,
A.
,
Roy
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2014
, “
Unsteady Flow Analysis Around an Elliptic-Bladed Savonius-Style Wind Turbine
,”
ASME 2014 Gas Turbine India Conference
,
New Delhi, India
,
Dec. 15–17
, p.
V001T05A001
.
61.
Gerardo
,
G.
, and
Molfino
,
R.
,
2014
, “
From Savonius to Bronzinus: A Comparison among Vertical Wind Turbines
,”
Energy Procedia
,
50
, pp.
10
18
. 10.1016/j.egypro.2014.06.002
62.
Tartuferi
,
M.
,
D'Alessandro
,
V.
,
Montelpare
,
S.
, and
Ricci
,
R.
,
2015
, “
Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems
,”
Energy
,
79
, pp.
371
384
. 10.1016/j.energy.2014.11.023
63.
El-Askary
,
W. A.
,
Nasef
,
M. H.
,
Abdel-Hamid
,
A. A.
, and
Gad
,
H. E.
,
2015
, “
Harvesting Wind Energy for Improving Performance of Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
139
, pp.
8
15
. 10.1016/j.jweia.2015.01.003
64.
Alom
,
N.
,
Kolaparthi
,
S. C.
,
Gadde
,
S. C.
, and
Saha
,
U. K.
,
2016
, “
Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations
,”
ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan, South Korea
,
June 19–24
, p.
V006T09A009
.
65.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2016
, “
Performance Improvement of Savonius Rotor Using Multiple Quarter Blades–A CFD Investigation
,”
Energy Convers. Manage.
,
127
, pp.
43
54
. 10.1016/j.enconman.2016.08.087
66.
Frikha
,
S.
,
Driss
,
Z.
,
Ayadi
,
E.
,
Masmoudi
,
Z.
, and
Abid
,
M. S.
,
2016
, “
Numerical and Experimental Characterization of Multi-Stage Savonius Rotors
,”
Energy
,
114
, pp.
382
404
. 10.1016/j.energy.2016.08.017
67.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2017
, “
CFD Investigation to Quantify the Effect of Layered Multiple Miniature Blades on the Performance of Savonius Rotor
,”
Energy Convers. Manage.
,
144
, pp.
275
285
. 10.1016/j.enconman.2017.04.059
68.
Mari
,
M.
,
Venturini
,
M.
, and
Beyene
,
A.
,
2017
, “
A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
061202
. 10.1115/1.4036964
69.
Tian
,
W.
,
Mao
,
Z.
,
An
,
X.
,
Zhang
,
B.
, and
Wen
,
H.
,
2017
, “
Numerical Study of Energy Recovery From the Wakes of Moving Vehicles on Highways by Using a Vertical Axis Wind Turbine
,”
Energy
,
141
, pp.
715
728
. 10.1016/j.energy.2017.07.172
70.
Damak
,
A.
,
Driss
,
Z.
, and
Abid
,
M. S.
,
2018
, “
Optimization of the Helical Savonius Rotor Through Wind Tunnel Experiments
,”
J.Wind Eng. Ind. Aerodyn.
,
174
, pp.
80
93
. 10.1016/j.jweia.2017.12.022
71.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical-Bladed Savonius Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051201
. 10.1115/1.4041735
72.
Amiri
,
M.
, and
Anbarsooz
,
M.
,
2019
, “
Improving the Energy Conversion Efficiency of a Savonius Rotor Using Automatic Valves
,”
ASME J. Sol. Energy
,
141
(
3
), p.
031017
. 10.1115/1.4042828
73.
Rathod
,
U. H.
,
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2019
, “
Effect of Capped Vents on Torque Distribution of a Semicircular-Bladed Savonius Wind Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
101201
. 10.1115/1.4043791
74.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Influence of Blade Profiles on Savonius Rotor Performance: Numerical Simulation and Experimental Validation
,”
Energy Convers. Manage.
,
186
, pp.
267
277
. 10.1016/j.enconman.2019.02.058
You do not currently have access to this content.