Abstract

This paper presents a pore-scale model proposed for numerical simulation of fines migration in porous media. The model simulates the behavior of spherical particles with different radii in flow by coupling lattice Boltzmann method (LBM) as a computational fluid dynamics (CFD) solver for the simulation of the fluid flow with a rigid body physics engine responsible for the simulation of the particulate transports. To achieve this, the basic LBM algorithm was extended to treat the curved particle boundaries, and a fluid-particle force interaction was implemented in order to account for the exerted force acting on the particles by the fluid and subsequent particulate movements. The accuracy and reliability of the proposed numerical model were successfully validated by simulating Poiseuille flow and Stokes flow and comparing the simulation results with those of the analytical solution. Thereafter, it was employed to simulate the migration of fine particles through synthetic 2D porous media. The simulation results were also presented to investigate the influence of fines migration on the porosity and permeability of the medium, and more interestingly on the hydraulic tortuosity as a criterion for changes in preferential flow path. As will be shown, the developed numerical method is able to successfully capture major retention mechanisms responsible for fines migration associated formation damage including external cake formation by the large particles, internal cake formation by the small particles, pore plugging, and surface deposition. This work provides a framework for further investigations regarding pore-scale phenomena associated with fines migration in the porous media.

References

1.
Civan
,
F.
,
2015
,
Reservoir Formation Damage
,
Gulf Professional Publishing
.
2.
Vasheghani Farahani
,
M.
,
Soleimani
,
R.
,
Jamshidi
,
S.
, and
Salehi
,
S.
,
2014
, “
Development of a Dynamic Model for Drilling Fluid’s Filtration: Implications to Prevent Formation Damage
,”
SPE International Symposium and Exhibition on Formation Damage Control, Society of Petroleum Engineers
.
3.
Movahedi
,
H.
,
Vasheghani Farahani
,
M.
, and
Jamshidi
,
S.
,
2017
, “
Application of Hydrated Basil Seeds (HBS) as the Herbal Fiber on Hole Cleaning and Filtration Control
,”
J. Pet. Sci. Eng.
,
152
, pp.
212
228
. 10.1016/j.petrol.2017.02.014
4.
Zhang
,
D.
,
Kang
,
Y.
,
You
,
L.
, and
Li
,
J.
,
2019
, “
Investigation of Formation Damage Induced During Drill-In Process of Ultradeep Fractured Tight Sandstone Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072901
. 10.1115/1.4042236
5.
Jarrahian
,
K.
,
Seiedi
,
O.
,
Sheykhan
,
M.
,
Sefti
,
M. V.
, and
Ayatollahi
,
S.
,
2012
, “
Wettability Alteration of Carbonate Rocks by Surfactants: a Mechanistic Study
,”
Colloids Surf., A
,
410
, pp.
1
10
. 10.1016/j.colsurfa.2012.06.007
6.
Soleimani
,
R.
,
Norouzi
,
S.
, and
Rasaei
,
M. R.
,
2019
, “
Investigation of Gas Condensate Drop-Out Effect on Gas Relative Permeability by Lattice Boltzmann Modelling
,”
Can. J. Chem. Eng.
,
97
(
6
), pp.
1921
1930
. 10.1002/cjce.23442
7.
Cai
,
J.
,
Yu
,
B.
,
Zou
,
M.
, and
Mei
,
M.
,
2010
, “
Fractal Analysis of Invasion Depth of Extraneous Fluids in Porous Media
,”
Chem. Eng. Sci.
,
65
(
18
), pp.
5178
5186
. 10.1016/j.ces.2010.06.013
8.
Bennion
,
D. B.
, and
Thomas
,
F. B.
,
2005
, “
Formation Damage Issues Impacting the Productivity of Low Permeability, Low Initial Water Saturation Gas Producing Formations
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
240
247
. 10.1115/1.1937420
9.
Song
,
W.
, and
Kovscek
,
A. R.
,
2016
, “
Direct Visualization of Pore-Scale Fines Migration and Formation Damage During Low-Salinity Waterflooding
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1276
1283
. 10.1016/j.jngse.2016.07.055
10.
Norouzi
,
S.
,
Soleimani
,
R.
,
Farahani
,
M. V.
, and
Rasaei
,
M.
,
2019
, “
Pore-Scale Simulation of Capillary Force Effect in Water-Oil Immiscible Displacement Process in Porous Media
,”
81st EAGE Conference and Exhibition 2019
,
London, UK
. http://dx.doi.org/10.3997/2214-4609.201900962
11.
Jarrahian
,
K.
,
Sorbie
,
K.
,
Singleton
,
M.
,
Boak
,
L.
, and
Graham
,
A.
,
2018
, “
The Effect of pH and Mineralogy on the Retention of Polymeric Scale Inhibitors on Carbonate Rocks for Precipitation Squeeze Treatments
,”
SPE International Conference and Exhibition on Formation Damage Control, Society of Petroleum Engineers
.
12.
Zhao
,
X.
,
Qiu
,
Z.
,
Sun
,
B.
,
Liu
,
S.
,
Xing
,
X.
, and
Wang
,
M.
,
2019
, “
Formation Damage Mechanisms Associated with Drilling and Completion Fluids for Deepwater Reservoirs
,”
J. Pet. Sci. Eng.
,
173
, pp.
112
121
. 10.1016/j.petrol.2018.09.098
13.
Joonaki
,
E.
,
Burgass
,
R.
,
Hassanpouryouzband
,
A.
, and
Tohidi
,
B.
,
2017
, “
Comparison of Experimental Techniques for Evaluation of Chemistries Against Asphaltene Aggregation and Deposition: New Application of High-Pressure and High-Temperature Quartz Crystal Microbalance
,”
Energy Fuels
,
32
(
3
), pp.
2712
2721
. 10.1021/acs.energyfuels.7b02773
14.
Leontaritis
,
K. J.
,
2005
, “
Asphaltene Near-Well-Bore Formation Damage Modeling
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
191
200
. 10.1115/1.1937416
15.
Neshat
,
S. S.
,
Okuno
,
R.
, and
Pope
,
G. A.
,
2018
, “
Simulation of Water and Condensate Blockage and Solvent Treatments in Tight Formations Using Coupled Three-Phase Flash and Capillary Pressure Models
,”
SPE Improved Oil Recovery Conference, Society of Petroleum Engineers
.
16.
Abaa
,
K.
,
Ityokumbul
,
M. T.
, and
Adewumi
,
M.
,
2017
, “
Effect of Acoustic Stimulation on Aqueous Phase Trapping in Low-Permeability Sandstones
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062905
. 10.1115/1.4037156
17.
Lappan
,
R.
, and
Fogler
,
H. S.
,
1992
, “
Effect of Bacterial Polysaccharide Production on Formation Damage
,”
SPE Prod. Eng.
,
7
(
2
), pp.
167
171
. 10.2118/19418-PA
18.
Civan
,
F.
,
2010
, “
Non-isothermal Permeability Impairment by Fines Migration and Deposition in Porous Media Including Dispersive Transport
,”
Transp. Porous Media
,
85
(
1
), pp.
233
258
. 10.1007/s11242-010-9557-0
19.
Zeinijahromi
,
A.
,
Farajzadeh
,
R.
,
Bruining
,
J. H.
, and
Bedrikovetsky
,
P.
,
2016
, “
Effect of Fines Migration on Oil–Water Relative Permeability During Two-Phase Flow in Porous Media
,”
Fuel
,
176
, pp.
222
236
. 10.1016/j.fuel.2016.02.066
20.
Russell
,
T.
, and
Bedrikovetsky
,
P.
,
2018
, “
Colloidal-Suspension Flows with Delayed Fines Detachment: Analytical Model & Laboratory Study
,”
Chem. Eng. Sci.
,
190
, pp.
98
109
. 10.1016/j.ces.2018.05.062
21.
Yuan
,
B.
, and
Wood
,
D. A.
,
2018
,
Formation Damage During Improved Oil Recovery: Fundamentals and Applications
,
Gulf Professional Publishing
.
22.
Chequer
,
L.
, and
Bedrikovetsky
,
P.
,
2019
, “
Suspension-Colloidal Flow Accompanied by Detachment of Oversaturated and Undersaturated Fines in Porous Media
,”
Chem. Eng. Sci.
,
198
, pp.
16
32
. 10.1016/j.ces.2018.12.033
23.
Farahani
,
M. V.
,
Shams
,
R.
, and
Jamshidi
,
S.
,
2018
, “
A Robust Modeling Approach for Predicting the Rheological Behavior of Thixotropic Fluids
,”
80th EAGE Conference and Exhibition 2018
,
Copenhagen, Denmark
. http://dx.doi.org/10.3997/2214-4609.201801295
24.
Ezeakacha
,
C.
,
Salehi
,
S.
, and
Hayatdavoudi
,
A.
,
2017
, “
Experimental Study of Drilling Fluid's Filtration and Mud Cake Evolution in Sandstone Formations
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022912
. 10.1115/1.4035425
25.
Nunes
,
M.
,
Bedrikovetsky
,
P.
,
Newbery
,
B.
,
Paiva
,
R.
,
Furtado
,
C.
, and
De Souza
,
A.
,
2010
, “
Theoretical Definition of Formation Damage Zone with Applications to Well Stimulation
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
033101
. 10.1115/1.4001800
26.
Mungan
,
N.
,
1965
, “
Permeability Reduction Through Changes in pH and Salinity
,”
J. Pet. Technol.
,
17
(
12
), pp.
1449
1453
. 10.2118/1283-PA
27.
Bernard
,
G. G.
,
1967
, “
Effect of Floodwater Salinity on Recovery of Oil From Cores Containing Clays
,”
SPE California Regional Meeting
,
Society of Petroleum Engineers, Los Angeles, CA
, p.
8
,
Society of Petroleum Engineers
. http://dx.doi.org/10.2118/1725-MS
28.
Lever
,
A.
, and
Dawe
,
R. A.
,
1984
, “
Water-Sensitivity and Migration of Fines in the Hopeman Sandstone
,”
J. Pet. Geol.
,
7
(
1
), pp.
97
107
. 10.1111/j.1747-5457.1984.tb00165.x
29.
Sarkar
,
A. K.
, and
Sharma
,
M. M.
,
1990
, “
Fines Migration in Two-Phase Flow
,”
J. Pet. Technol.
,
42
(
5
), pp.
646
652
. 10.2118/17437-PA
30.
Valdya
,
R.
, and
Fogler
,
H.
,
1992
, “
Fines Migration and Formation Damage: Influence of pH and ion Exchange
,”
SPE Prod. Eng.
,
7
(
4
), pp.
325
330
. 10.2118/19413-PA
31.
Khilar
,
K. C.
, and
Fogler
,
H. S.
,
1998
,
Migrations of Fines in Porous Media
,
Springer Science & Business Media
.
32.
Tang
,
G.-Q.
, and
Morrow
,
N. R.
,
1999
, “
Influence of Brine Composition and Fines Migration on Crude Oil/Brine/Rock Interactions and Oil Recovery
,”
J. Pet. Sci. Eng.
,
24
(
2–4
), pp.
99
111
. 10.1016/S0920-4105(99)00034-0
33.
Al-Abduwani
,
F.
,
Farajzadeh
,
R.
,
Van den Broek
,
W.
,
Currie
,
P.
, and
Zitha
,
P.
,
2005
, “
Filtration of Micron-Sized Particles in Granular Media Revealed by X-Ray Computed Tomography
,”
Rev. Sci. Instrum.
,
76
(
10
), p.
103704
. 10.1063/1.2103467
34.
Fogden
,
A.
,
Kumar
,
M.
,
Morrow
,
N. R.
, and
Buckley
,
J. S.
,
2011
, “
Mobilization of Fine Particles During Flooding of Sandstones and Possible Relations to Enhanced Oil Recovery
,”
Energy Fuels
,
25
(
4
), pp.
1605
1616
. 10.1021/ef101572n
35.
Hussain
,
F.
,
Zeinijahromi
,
A.
,
Bedrikovetsky
,
P.
,
Badalyan
,
A.
,
Carageorgos
,
T.
, and
Cinar
,
Y.
,
2013
, “
An Experimental Study of Improved Oil Recovery Through Fines-Assisted Waterflooding
,”
J. Pet. Sci. Eng.
,
109
, pp.
187
197
. 10.1016/j.petrol.2013.08.031
36.
Feia
,
S.
,
Dupla
,
J. C.
,
Ghabezloo
,
S.
,
Sulem
,
J.
,
Canou
,
J.
,
Onaisi
,
A.
,
Lescanne
,
H.
, and
Aubry
,
E.
,
2015
, “
Experimental Investigation of Particle Suspension Injection and Permeability Impairment in Porous Media
,”
Geomech. Energy Environ.
,
3
, pp.
24
39
. 10.1016/j.gete.2015.07.001
37.
Ahfir
,
N.-D.
,
Hammadi
,
A.
,
Alem
,
A.
,
Wang
,
H.
,
Le Bras
,
G.
, and
Ouahbi
,
T.
,
2017
, “
Porous Media Grain Size Distribution and Hydrodynamic Forces Effects on Transport and Deposition of Suspended Particles
,”
J. Environ. Sci.
,
53
, pp.
161
172
. 10.1016/j.jes.2016.01.032
38.
Bennacer
,
L.
,
Ahfir
,
N.-D.
,
Alem
,
A.
, and
Wang
,
H.
,
2017
, “
Coupled Effects of Ionic Strength, Particle Size, and Flow Velocity on Transport and Deposition of Suspended Particles in Saturated Porous Media
,”
Transp. Porous Media
,
118
(
2
), pp.
251
269
. 10.1007/s11242-017-0856-6
39.
Jung
,
J.
,
Cao
,
S. C.
,
Shin
,
Y.-H.
,
Al-Raoush
,
R. I.
,
Alshibli
,
K.
, and
Choi
,
J.-W.
,
2018
, “
A Microfluidic Pore Model to Study the Migration of Fine Particles in Single-Phase and Multi-Phase Flows in Porous Media
,”
Microsyst. Technol.
,
24
(
2
), pp.
1071
1080
. 10.1007/s00542-017-3462-1
40.
Zamani
,
A.
, and
Maini
,
B.
,
2009
, “
Flow of Dispersed Particles Through Porous Media—Deep bed Filtration
,”
J. Pet. Sci. Eng.
,
69
(
1–2
), pp.
71
88
. 10.1016/j.petrol.2009.06.016
41.
You
,
Z.
,
Yang
,
Y.
,
Badalyan
,
A.
,
Bedrikovetsky
,
P.
, and
Hand
,
M.
,
2016
, “
Mathematical Modelling of Fines Migration in Geothermal Reservoirs
,”
Geothermics
,
59
, pp.
123
133
. 10.1016/j.geothermics.2015.05.008
42.
Borazjani
,
S.
,
Behr
,
A.
,
Genolet
,
L.
,
Van Der Net
,
A.
, and
Bedrikovetsky
,
P.
,
2017
, “
Effects of Fines Migration on Low-Salinity Waterflooding: Analytical Modelling
,”
Transp. Porous Media
,
116
(
1
), pp.
213
249
. 10.1007/s11242-016-0771-2
43.
Zhu
,
S.-Y.
,
Peng
,
X.-L.
,
Du
,
Z.-M.
,
Wang
,
C.-W.
,
Deng
,
P.
,
Mo
,
F.
,
Lei
,
Y.
, and
Wang
,
M.
,
2017
, “
Modeling of Coal Fine Migration During CBM Production in High-Rank Coal
,”
Transp. Porous Media
,
118
(
1
), pp.
65
83
. 10.1007/s11242-017-0847-7
44.
Li
,
Q.
, and
Prigiobbe
,
V.
,
2018
, “
Numerical Simulations of the Migration of Fine Particles Through Porous Media
,”
Transp. Porous Media
,
122
(
3
), pp.
745
759
. 10.1007/s11242-018-1024-3
45.
Su
,
J.
,
Chai
,
G.
,
Wang
,
L.
,
Cao
,
W.
,
Gu
,
Z.
,
Chen
,
C.
, and
Xu
,
X. Y.
,
2019
, “
Pore-Scale Direct Numerical Simulation of Particle Transport in Porous Media
,”
Chem. Eng. Sci.
,
199
, pp.
613
627
. 10.1016/j.ces.2019.01.033
46.
Sukop
,
M.
, and
Thorne
,
D. T.
,
2006
,
Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers
,
Springer-Verlag Berlin Heidelberg
.
47.
Kong
,
X.
,
Li
,
Z.
,
Shen
,
B.
,
Wu
,
Y.
,
Zhang
,
Y.
, and
Cai
,
D.
,
2019
, “
Simulation of Flow and Soot Particle Distribution in Wall-Flow DPF Based on Lattice Boltzmann Method
,”
Chem. Eng. Sci.
,
202
, pp.
169
185
.10.1016/j.ces.2019.03.039
48.
Foroughi
,
S.
,
Jamshidi
,
S.
, and
Masihi
,
M.
,
2013
, “
Lattice Boltzmann Method on Quadtree Grids for Simulating Fluid Flow Through Porous Media: A New Automatic Algorithm
,”
Physica A
,
392
(
20
), pp.
4772
4786
. 10.1016/j.physa.2013.05.047
49.
Foroughi
,
S.
,
Masihi
,
M.
,
Jamshidi
,
S.
, and
Pishvaie
,
M. R.
,
2017
, “
Investigating the Permeability–Porosity Relation of Percolation-Based Porous Media Using the Lattice Boltzmann Method
,”
J. Porous Media
,
20
(
10
). 10.1615/JPorMedia.v20.i10.30
50.
Mohamad
,
A. A.
,
2011
,
Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes
,
Springer Science & Business Media
.
51.
Foroughi
,
S.
,
Jamshidi
,
S.
, and
Pishvaie
,
M. R.
,
2018
, “
New Correlative Models to Improve Prediction of Fracture Permeability and Inertial Resistance Coefficient
,”
Transp. Porous Media
,
121
(
3
), pp.
557
584
. 10.1007/s11242-017-0930-0
52.
Iglberger
,
K.
,
Thürey
,
N.
, and
Rüde
,
U.
,
2008
, “
Simulation of Moving Particles in 3D With the Lattice Boltzmann Method
,”
Comput. Math. Appl.
,
55
(
7
), pp.
1461
1468
. 10.1016/j.camwa.2007.08.022
53.
Moller
,
T.
,
Hainess
,
E.
, and
Akenine-Moller
,
T.
,
2002
,
Real-Time Rendering
, 2nd ed.,
AK Peters Ltd
.
54.
Ernst
,
M.
,
Dietzel
,
M.
, and
Sommerfeld
,
M.
,
2013
, “
A Lattice Boltzmann Method for Simulating Transport and Agglomeration of Resolved Particles
,”
Acta Mechanica
,
224
(
10
), pp.
2425
2449
. 10.1007/s00707-013-0923-1
55.
Bird
,
R. B.
,
2002
, “
Transport Phenomena
,”
ASME Appl. Mech. Rev.
,
55
(
1
), pp.
R1
R4
. 10.1115/1.1424298
56.
Duda
,
A.
,
Koza
,
Z.
, and
Matyka
,
M.
,
2011
, “
Hydraulic Tortuosity in Arbitrary Porous Media Flow
,”
Phys. Rev. E
,
84
(
3
), p.
036319
. 10.1103/PhysRevE.84.036319
57.
Matyka
,
M.
,
Khalili
,
A.
, and
Koza
,
Z.
,
2008
, “
Tortuosity-Porosity Relation in Porous Media Flow
,”
Phys. Rev. E
,
78
(
2
), p.
026306
. 10.1103/PhysRevE.78.026306
You do not currently have access to this content.