Icing on wind turbines is a major problem in cold regions. To study blade icing, water droplet collection efficiency is calculated on the National Renewable Energy Laboratory (NREL) phase VI blade. First, water droplet conservation equations are embedded into ANSYS Fluent, and the results calculated by the Eulerian method are validated. For the two-dimensional (2D) airfoil, the peak collection efficiency error is 3.7%; for the three-dimensional (3D) blade, the peak collection efficiency error is 2.8%. Second, collection efficiency on the NREL phase VI blade is investigated. The results indicate that water droplets mainly impact on the blade leading edge, and the collection efficiency increases along the radial direction. Finally, the 3D rotating effect on collection efficiency is studied. The results demonstrate that, at a wind speed of 7 m/s, the 3D rotating effect has almost no influence on collection efficiency; however, the effect must be considered in water droplet collection at a wind speed of 10 m/s.

References

1.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
2.
Hu
,
L. Q.
,
Zhu
,
X. C.
,
Hu
,
C. X.
,
Chen
,
J. G.
, and
Du
,
Z. H.
,
2017
, “
Wind Turbines Ice Distribution and Load Response Under Icing Conditions
,”
Renewable Energy
,
113
(
10
), pp.
608
619
.
3.
Parent
,
O.
, and
Ilinca
,
A.
,
2011
, “
Anti-Icing and De-Icing Techniques for Wind Turbines: Critical Review
,”
Cold Regions Sci. Technol.
,
65
(
1
), pp.
88
96
.
4.
Fakorede
,
O.
,
Feger
,
Z.
,
Ibrahim
,
H.
,
Ilinca
,
A.
,
Perron
,
J.
, and
Masson
,
C.
,
2016
, “
Ice Protection Systems for Wind Turbines in Cold Climate: Characteristics, Comparisons and Analysis
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
662
675
.
5.
Barber
,
S.
,
Wang
,
Y.
,
Jafari
,
S.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2011
, “
The Impact of Ice Formation on Wind Turbine Performance and Aerodynamics
,”
ASME J. Sol. Energy Eng.
,
133
(
1
), p. 011007.
6.
Klaus
,
G.
,
2017
, “Perceived Risk and Response to the Wind Turbine Ice Throw Hazard: Comparing Community Stakeholders and Operations and Maintenance Personnel in Two Regions of Texas,”
Ph.D. thesis
, Texas State University, San Marcos, TX.https://digital.library.txstate.edu/handle/10877/6599
7.
Lamraoui
,
F.
,
Fortin
,
G.
,
Benoit
,
R.
,
Perron
,
J.
, and
Masson
,
C.
,
2014
, “
Atmospheric Icing Impact on Wind Turbine Production
,”
Cold Regions Sci. Technol.
,
100
(
4
), pp.
36
49
.
8.
Battisti
,
L.
,
2015
,
Wind Turbines in Cold Climates (Green Energy and Technology)
,
Springer International
,
Cham, Switzerland
.
9.
Bengt
,
S.
, and
Wu
,
Z.
,
2015
, “
On Icing and Icing Mitigation of Wind Turbine Blades in Cold Climate
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051203
.
10.
Ilinca
,
A.
,
2011
, “
Analysis and Mitigation of Icing Effects on Wind Turbines
,”
Wind Turbines
,
4
(
4
), pp.
183
214
.https://cdn.intechopen.com/pdfs-wm/14802.pdf
11.
Hochart
,
C.
,
Fortin
,
G.
, and
Perron
,
J.
,
2008
, “
Wind Turbine Performance Under Icing Conditions
,”
Wind Energy
,
11
(
4
), pp.
319
333
.
12.
Han
,
Y. Q.
,
2016
, “Aerodynamics and Thermal Physics of Helicopter Ice Accretion,”
Ph.D. thesis
, Pennsylvania State University, State College, PA.https://etda.libraries.psu.edu/catalog/28036
13.
Han
,
Y.
,
Palacios
,
J.
, and
Schmitz
,
S.
,
2012
, “
Scaled Ice Accretion Experiments on a Rotating Wind Turbine Blade
,”
J. Wind Eng. Ind. Aerodyn.
,
109
(
109
), pp.
55
67
.
14.
Kraj
,
A. G.
, and
Bibeau
,
E. L.
,
2010
, “
Measurement Method and Results of Ice Adhesion Force on the Curved Surface of a Wind Turbine Blade
,”
Renewable Energy
,
35
(
4
), pp.
741
746
.
15.
Blasco
,
P.
,
Palacios
,
J.
, and
Schmitz
,
S.
,
2017
, “
Effect of Icing Roughness on Wind Turbine Power Production
,”
Wind Energy
,
20
(
4
), pp.
601
607
.
16.
Etemaddar
,
M.
,
Hansen
,
M. O. L.
, and
Moan
,
T.
,
2014
, “
Wind Turbine Aerodynamic Response Under Atmospheric Icing Conditions
,”
Wind Energy
,
17
(
2
), pp.
241
265
.
17.
Homola
,
M. C.
,
Wallenius
,
T.
,
Makkonen
,
L.
,
Nicklasson
,
P. J.
, and
Sundsbo
,
P. A.
,
2010
, “
Turbine Size and Temperature Dependence of Icing on Wind Turbine Blades
,”
Wind Energy
,
34
(
6
), pp.
615
627
.
18.
Reid
,
T.
,
Baruzzi
,
G.
,
Ozcer
,
I.
,
Switchenko
,
D.
, and
Habashi
,
W.
,
2013
, “FENSAP-ICE Simulation of Icing on Wind Turbine Blades—Part 1: Performance Degradation,”
AIAA
Paper No. 2013-0750.
19.
Hasanzadeh
,
K.
,
Laurendeau
,
E.
, and
Paraschivoiu
,
I.
,
2013
, “
Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations
,”
J. Aircr.
,
50
(
4
), pp.
1261
1274
.
20.
Iuliano
,
E.
,
Brandi
,
V.
,
Mingione
,
G.
,
Nicola
,
C.
, and
Tognaccini
,
R.
,
2006
, “Water Impingement Prediction on Multi-Element Airfoils by Means of Eulerian and Lagrangian Approach With Viscous and Inviscid Air Flow,”
AIAA
Paper No. 2006-1270.
21.
Tong
,
X. L.
, and
Luke
,
E. A.
,
2005
, “Eulerian Simulations of Icing Collection Efficiency Using a Singularity Diffusion Model,”
AIAA
Paper No. 2005-1246.
22.
Wright
,
W.
,
2008
, “User's Manual for LEWICE Version 3.2,” NASA Glenn Research Center, Cleveland, OH, Technical Report No.
CR-2008-21425
.https://ntrs.nasa.gov/search.jsp?R=20080048307
23.
Wirogo
,
S.
, and
Sirirambhatla
,
S.
,
2003
, “An Eulerian Method to Calculate the Collection Efficiency on Two and Three Dimensional Bodies,”
AIAA
Paper No. 2003-1073.
24.
ANSYS,
2011
,
FLUENT Theory Guide. ANSYS FLUENT 14.0
,
ANSYS
,
Canonsburg, PA
.
25.
ANSYS,
2011
,
FLUENT UDF Manual. ANSYS FLUENT 14.0
,
ANSYS
,
Canonsburg, PA
.
26.
Sznajder
,
J.
,
2015
, “
Implementation of an Eulerian Method of Determination of Surface Water Collection Efficiency for Atmospheric Icing Problems
,”
Trans. Inst. Aviation
,
238
(
1
), pp.
91
105
.
27.
Wang
,
H. P.
,
Zhang
,
B.
,
Qin
,
Q. G.
, and
Xu
,
X.
,
2017
, “
Flow Control on the NREL S809 Wind Turbine Airfoil Using Vortex Generators
,”
Energy
,
118
(
1
), pp.
1210
1221
.
28.
Hu
,
L. Q.
,
Zhu
,
X. C.
,
Hu
,
C. X.
,
Chen
,
J. G.
, and
Du
,
Z. H.
,
2017
, “
Calculation of the Water Droplets Local Collection Efficiency on the Wind Turbines Blade
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051211
.
29.
Papadakis
,
M.
,
Rachman
,
A.
,
Wong
,
S.
,
Yeong
,
H.
, and
Bidwell
,
C. S.
,
2007
, “Water Droplet Impingement on Simulated Glaze, Mixed and Rime Ice Accretions,” NASA Glenn Research Center, Cleveland, OH, Technical Report No.
NASA/TM-2007-213961
.https://ntrs.nasa.gov/search.jsp?R=20080008874
30.
Beaugendre
,
H.
,
Morency
,
F.
, and
Habashi
,
W. G.
,
2003
, “
FENSAP-ICE's Three Dimensional in Flight Ice Accretion Module: ICE3D
,”
J. Aircr.
,
40
(
2
), pp.
239
247
.
31.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
,
2001
, “Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-29955
.https://www.nrel.gov/docs/fy02osti/29955.pdf
32.
Potsdam
,
M.
, and
Mavriplis
,
D.
,
2009
, “Unstructured Mesh CFD Aerodynamic Analysis of the NREL Phase VI Rotor,”
AIAA
Paper No. 2009-1221.
33.
Hsu
,
M. C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2013
, “
Finite Element Simulation of Wind Turbine Aerodynamics: Validation Study Using NREL Phase VI Experiment
,”
Wind Energy
,
17
(
3
), pp.
461
481
.
34.
Yu
,
G. H.
,
Shen
,
X.
,
Zhu
,
X. C.
, and
Du
,
Z. H.
,
2011
, “
An Insight Into the Separate Flow and Stall Delay for HAWT
,”
Renewable Energy
,
36
(
1
), pp.
69
76
.
You do not currently have access to this content.