Chemical looping with oxygen uncoupling (CLOU) is a carbon capture technology that utilizes a metal oxide as an oxygen carrier to selectively separate oxygen from air and release gaseous O2 into a reactor where fuel, such as coal, is combusted. Previous research has addressed reactor design for CLOU systems, but little direct comparison between different reactor designs has been performed. This study utilizes Barracuda-VR® for comparison of two system configurations, one uses circulating fluidized beds (CFB) for both the air reactor (AR) and fuel reactor (FR) and another uses bubbling fluidized beds for both reactors. Initial validation of experimental and computational fluid dynamic (CFD) simulations was performed to show that basic trends are captured with the CFD code. The CFD simulations were then used to perform comparison of key performance parameters such as solids circulation rate and reactor residence time, pressure profiles in the reactors and loopseals, and particle velocities in different locations of the reactor as functions of total solids inventory and reactor gas flows. Using these simulation results, it was determined that the dual CFB system had larger range for solids circulation rate before choked flow was obtained. Both systems had similar particle velocities for the bottom 80% of particle mass, but the bubbling bed (BB) obtained higher particle velocities as compared to the circulating fluidized-bed FR, due to the transport riser. As a system, the results showed that the dual CFB configuration allowed better control over the range of parameters tested.

References

1.
IPCC
,
2014
, “
Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,”
R. K.
Pachauri
and
L. A.
Meyer
, eds.,
IPCC
,
Geneva, Switzerland
.
2.
United States Environmental Protection Agency
,
2012
, “
Carbon Dioxide Emissions
,” http://www.epa.gov/climatechange/ghgemissions/gases/co2.html
3.
Granite
,
E. J.
, and
O’Brien
,
T.
,
2005
, “
Review of Novel Methods for Carbon Dioxide Separation From Flue and Fuel Gases
,”
Fuel Process. Technol.
,
86
(
14–15
), pp.
1423
1434
.
4.
Stromberg
,
L.
,
2001
, “
Discussion on the Potential and Cost of Different CO2 Emission Control Options
,” VGB Power Tech, Essen, Germany.
5.
Ekstroom
,
C.
,
Schwendig
,
F.
,
Biede
,
O.
,
Franco
,
F.
,
Haupt
,
G.
,
de Koeijer
,
G.
,
Papapavlou
,
C.
, and
Rookke
,
P. E.
,
2009
, “
Techno-Economic Evaluations and Benchmarking of Pre-Combustion CO2 Capture and Oxy-Fuel Processes Developed in the European ENCAP Project
,”
Energy Proc.
, pp.
4233
4240
.
6.
Mattisson
,
T.
,
Lyngfelt
,
A.
, and
Leion
,
H.
,
2009
, “
Chemical-Looping With Oxygen Uncoupling for Combustion of Solid Fuels
,”
Int. J. Greenhouse Gas Control
,
3
(
1
), pp.
11
19
.
7.
Mattisson
,
T.
,
2013
, “
Materials for Chemical-Looping With Oxygen Uncoupling
,”
ISRN Chem. Eng.
,
2013
(
1
), pp.
1
19
.
8.
Leion
,
H.
,
Mattisson
,
T.
, and
Lyngfelt
,
A.
,
2009
, “
Using Chemical-Looping With Oxygen Uncoupling (CLOU) for Combustion of Six Different Solid Fuels
,”
Energy Proc.
,
1
(
1
), pp.
447
453
.
9.
Lyngfelt
,
A.
,
2014
, “
Chemical-Looping Combustion of Solid Fuels—Status of Development
,”
Appl. Energy
,
113
, pp.
1869
1873
.
10.
Yerushalmi
,
J.
,
Turner
,
D. H.
, and
Squires
,
A. M.
,
1976
, “
The Fast Fluidized Bed
,”
Ind. Eng. Chem. Process Des. Dev.
,
15
(
1
), pp.
47
53
.
11.
Basu
,
P.
, and
Fraser
,
S. A.
,
1991
,
Circulating Fluidized Bed Boilers: Design and Operations
,
Butterworth-Heinemann
,
Stoneham, MA
.
12.
Grace
,
J.
,
1990
, “
High-Velocity Fluidized Bed Reactors
,”
Chem. Eng. Sci.
,
45
(
8
), pp.
1953
1966
.
13.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1991
,
Fluidization Engineering
,
Butterworth-Heinemann
,
Newton, MA
.
14.
Berguerand
,
N.
, and
Lyngfelt
,
A.
,
2008
, “
Design and Operation of a 10 kWth Chemical-Looping Combustor for Solid Fuels—Testing With South African Coal
,”
Fuel
,
87
(
12
), pp.
2713
2726
.
15.
Berguerand
,
N.
, and
Lyngfelt
,
A.
,
2009
, “
Chemical-Looping Combustion of Petroleum Coke Using Ilmenite in a 10 kWth Unit-High-Temperature Operation
,”
Energy Fuels
,
23
(
10
), pp.
5257
5268
.
16.
Bischi
,
A.
,
Langørgen
,
Ø.
,
Saanum
,
I.
,
Bakken
,
J.
,
Seljeskog
,
M.
,
Bysveen
,
M.
,
Morin
,
J.-X.
, and
Bolland
,
O.
,
2011
, “
Design Study of a 150 kWth Double Loop Circulating Fluidized Bed Reactor System for Chemical Looping Combustion With Focus on Industrial Applicability and Pressurization
,”
Int. J. Greenhouse Gas Control
,
5
(
3
), pp.
467
474
.
17.
Kimball
,
E.
,
Lambert
,
A.
,
Fossdal
,
A.
, and
Leenman
,
R.
,
2013
, “
Reactor Choices for Chemical Looping Combustion (CLC)—Dependencies on Materials Characteristics
,”
Energy Proc.
,
37
, pp.
567
574
.
18.
Markström
,
P.
,
Linderholm
,
C.
, and
Lyngfelt
,
A.
,
2013
, “
Chemical-Looping Combustion of Solid Fuels—Design and Operation of a 100 kW Unit With Bituminous Coal
,”
Int. J. Greenhouse Gas Control
,
15
, pp.
150
162
.
19.
Ströhle
,
J.
,
Orth
,
M.
, and
Epple
,
B.
,
2014
, “
Design and Operation of a 1 MWth Chemical Looping Plant
,”
Appl. Energy
,
113
, pp.
1490
1495
.
20.
Kolbitsch
,
P.
,
Pröll
,
T.
,
Bolhar-Nordenkampf
,
J.
, and
Hofbauer
,
H.
,
2009
, “
Design of a Chemical Looping Combustor Using a Dual Circulating Fluidized Bed (DCFB) Reactor System
,”
Chem. Eng. Technol.
,
32
(
3
), pp.
398
403
.
21.
Parker
,
J. M.
,
2014
, “
CFD Model for the Simulation of Chemical Looping Combustion
,”
Powder Technol.
,
265
, pp.
47
53
.
22.
Kim
,
H. R.
,
Wang
,
D.
,
Zeng
,
L.
,
Bayham
,
S.
,
Tong
,
A.
,
Chung
,
E.
,
Kathe
,
M.
V
,
Luo
,
S.
,
Mcgiveron
,
O.
,
Wang
,
A.
,
Sun
,
Z.
,
Chen
,
D.
, and
Fan
,
L.
,
2013
, “
Coal Direct Chemical Looping Combustion Process: Design and Operation of a 25-kWth Sub-Pilot Unit
,”
Fuel
,
108
, pp.
370
384
.
23.
Chapman
,
P. J.
,
Abdulally
,
I. F.
,
Kang
,
S. G.
, and
Gauville
,
P.
,
2014
, “
Application of CFD Modeling Tools to Optimize 660 MW Ultra Supercritical CFB Design
,”
11th International Conference on Fluidized Bed Technology
, Beijing, pp.
469
474
.
24.
Suraniti
,
S. L.
,
Nsakala
,
N. Y.
, and
Darling
,
S. L.
,
2009
, “
Alstom Oxyfuel CFB Boilers: A Promising Option for CO2 Capture
,”
Energy Proc.
,
1
(
1
), pp.
543
548
.
25.
Sharma
,
R.
,
Delebarre
,
A.
, and
Alappat
,
B.
,
2015
, “
Chemical Looping Combustion—An Overview and Application of the Recirculating Fluidized Bed Reactor for Improvement
,”
Int. J. Energy R.
,
38
(
10
), pp.
1331
1350
.
26.
Sahir
,
A. H.
,
Sohn
,
H. Y.
,
Leion
,
H.
, and
Lighty
,
J. S.
,
2012
, “
Rate Analysis of Chemical-Looping With Oxygen Uncoupling (CLOU) for Solid Fuels
,”
Energy Fuels
,
26
(
7
), pp.
4395
4404
.
27.
Hannes
,
J. P.
,
1996
,
Mathematical Modelling of Circulating Fluidized Bed Combustion
,
City-Pring Verlag
,
Aachen, Germany
.
28.
Shuai
,
W.
,
Yunchao
,
Y.
, and
Huilin
,
L.
,
2012
, “
Computational Fluid Dynamic Simulation Based Cluster Structures-Dependent Drag Coefficient Model in Dual Circulating Fluidized Beds of Chemical Looping Combustion
,”
Ind. Eng. Chem. Res.
,
51
(
3
), pp.
1396
1412
.
29.
Guan
,
Y.
,
Chang
,
J.
,
Zhang
,
K.
,
Wang
,
B.
, and
Sun
,
Q.
,
2014
, “
Three-Dimensional CFD Simulation of Hydrodynamics in an Interconnected Fluidized Bed for Chemical Looping Combustion
,”
Powder Technol.
,
268
, pp.
316
328
.
30.
Wang
,
S.
,
Lu
,
H.
,
Zhao
,
F.
, and
Liu
,
G.
,
2014
, “
CFD Studies of Dual Circulating Fluidized Bed Reactors for Chemical Looping Combustion Processes
,”
Chem. Eng. J.
,
236
, pp.
121
130
.
31.
Hamilton
,
M. A.
,
Whitty
,
K. J.
, and
Lighty
,
J. S.
,
2014
, “
Scaling of a 100 kW Chemical Looping Combustion System and Performance With Different Fluidizing Gases
,”
35th International Symposium on Combustion
, San Francisco, CA.
32.
Peng
,
Z.
,
Doroodchi
,
E.
,
Alghamdi
,
Y. A.
,
Shah
,
K.
,
Luo
,
C.
, and
Moghtaderi
,
B.
,
2015
, “
CFD–DEM Simulation of Solid Circulation Rate in the Cold Flow Model of Chemical Looping Systems
,”
Chem. Eng. Res. Des.
,
75
, pp.
262
280
.
33.
Andrews
,
M.
, and
O’rourke
,
P.
,
1996
, “
The Multiphase Particle-in-Cell (MP-PIC) Method for Dense Particulate Flows
,”
Int. J. Multiphase Flow
,
22
(
2
), pp.
379
402
.
34.
O’Rourke
,
P. J.
,
Zhao
,
P.
(Pinghua), and
Snider
,
D.
,
2009
, “
A Model for Collisional Exchange in Gas/Liquid/Solid Fluidized Beds
,”
Chem. Eng. Sci.
,
64
(
8
), pp.
1784
1797
.
35.
Snider
,
D. M.
, and
O’rourke
,
P.
,
2011
, “
The Multiphase Particle-in-Cell (MP-PIC) Method for Dense Particulate Flows
,”
Computational Gas-Solids Flows and Reacting Systems
, pp.
277
314
.
36.
Snider
,
D. M.
,
Clark
,
S. M.
, and
O’Rourke
,
P. J.
,
2011
, “
Eulerian–Lagrangian Method for Three-Dimensional Thermal Reacting Flow With Application to Coal Gasifiers
,”
Chem. Eng. Sci.
,
66
(
6
), pp.
1285
1295
.
37.
O’Rourke
,
P. J.
, and
Snider
,
D. M.
,
2010
, “
An Improved Collision Damping Time for MP-PIC Calculations of Dense Particle Flows With Applications to Polydisperse Sedimenting Beds and Colliding Particle Jets
,”
Chem. Eng. Sci.
,
65
(
22
), pp.
6014
6028
.
38.
O’Rourke
,
P. J.
, and
Snider
,
D. M.
,
2012
, “
Inclusion of Collisional Return-to-Isotropy in the MP-PIC Method
,”
Chem. Eng. Sci.
,
80
, pp.
39
54
.
39.
Parker
,
J.
,
Williams
,
K.
,
Zhao
,
P.
, and
Thibault
,
S.
,
2014
, “
CPFD Modeling of Industrial-Scale Dry Flue Gas Desulfurization Systems
,”
11th International Conference on Fluidized Bed Technology
, Beijing.
40.
Snider
,
D. M.
,
2007
, “
Three Fundamental Granular Flow Experiments and CPFD Predictions
,”
Powder Technol.
,
176
(
1
), pp.
36
46
.
41.
Clark
,
S. M.
,
Snider
,
D. M.
, and
Fletcher
,
R. P.
,
2012
, “
Multiphase Simulation of a Commercial Fluidized Catalytic Cracking Regenerator
,”
AIChE Annual Meeting Conference Proceedings
, AIChE, Pittsburgh, p.
9p
.
42.
Glicksman
,
L.
,
1993
, “
Simplified Scaling Relationships for Fluidized Beds
,”
Powder Technol.
,
77
(
2
), pp.
177
199
.
43.
Hamilton
,
M. A.
,
Whitty
,
K. J.
, and
Lighty
,
J. S.
,
2015
, “
Parametric Comparison of Dual Fluidized Bed Performance Using a Cold-Flow Unit and Barracuda-VR Simulations
,”
22nd International Conference of Fluidized Bed Conversion
, Turku, Finland.
44.
Markström
,
P.
, and
Lyngfelt
,
A.
,
2012
, “
Designing and Operating a Cold-Flow Model of a 100kW Chemical-Looping Combustor
,”
Powder Technol.
,
222
, pp.
182
192
.
45.
CPFD Software
,
2014
, “
Barracuda Series 16 Training Manual
,” CPFD Software, LLC, Albuquerque, NM, pp.
1
219
.
46.
Larsén
,
R.
,
2014
, “
Construction and Initial Testing of a Lab-Scale Chemical Looping System
,” Chalmers University of Technology, Göteborg, Sweden.
47.
Glicksman
,
L.
,
1984
, “
Scaling Relationships for Fluidized Beds
,”
Chem. Eng. Sci.
,
39
(
9
), pp.
1373
1379
.
48.
Clayton
,
C. K.
, and
Whitty
,
K. J.
,
2014
, “
Measurement and Modeling of Decomposition Kinetics for Copper Oxide-Based Chemical Looping With Oxygen Uncoupling
,”
Appl. Energy
,
116
, pp.
416
423
.
49.
Clayton
,
C. K.
,
Sohn
,
H. Y.
, and
Whitty
,
K. J.
,
2014
, “
Oxidation Kinetics of Cu2O in Oxygen Carriers for Chemical Looping With Oxygen Uncoupling
,”
Ind. Eng. Chem. Res.
,
53
(
8
), pp.
2976
2986
.
50.
Rydén
,
M.
, and
Arjmand
,
M.
,
2012
, “
Continuous Hydrogen Production Via the Steam–Iron Reaction by Chemical Looping in a Circulating Fluidized-Bed Reactor
,”
Int. J. Hydrogen Energy
,
37
(
6
), pp.
4843
4854
.
You do not currently have access to this content.