Abstract

Better thermal management is a key enabler of higher power density in traction inverter power modules. For the first time, we successfully fabricated and tested a microchannel with a three-dimensional (3D) manifold cooler (MMC) using aluminum nitride (AlN)-based directed bonded copper (DBC) substrates. The microchannels (width ∼300 μm and height ∼450 μm) and 3D manifold fluidic passages (width ∼300 μm and height ∼600 μm) were fabricated in two DBC substrates using the femtosecond laser and subsequently bonded using transition liquid phase (TLP) bonding. In this study, the hydraulic and thermal performance of the 3D MMC is measured and validated with numerical simulation. The proposed 3D MMC is capable of removing heat at 600 W/cm2 with a 10 kPa pressured drop at the thermal thermal resistance of 0.2 cm2 K/W. The optimized designs via geometric and layout rearrangement were conducted, which indicates the pressure drop can be further reduced by 10× while maintaining the same thermal performance.

References

1.
Bose
,
B. K.
,
1992
, “
Recent Advances in Power Electronics
,”
IEEE Trans. Power Electron.
,
7
(
1
), pp.
2
16
.10.1109/63.124572
2.
Van Wyk
,
J. D.
, and
Lee
,
F. C.
,
2013
, “
On a Future for Power Electronics
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
1
(
2
), pp.
59
72
.10.1109/JESTPE.2013.2271499
3.
Kanata
,
T.
,
Nishiwaki
,
K.
, and
Hamada
,
K.
,
2010
, “
Development Trends of Power Semiconductors for Hybrid Vehicles
,”
The 2010 International Power Electronics Conference-ECCE ASIA
,
Sapporo, Japan, June 21–24, pp.
778
782
.10.1109/IPEC.2010.5543294
4.
Schiestl
,
M.
,
Marcolini
,
F.
,
Incurvati
,
M.
,
Capponi
,
F. G.
,
Starz
,
R.
,
Caricchi
,
F.
,
Rodriguez
,
A. S.
, and
Wild
,
L.
,
2021
, “
Development of a High Power Density Drive System for Unmanned Aerial Vehicles
,”
IEEE Trans. Power Electron.
,
36
(
3
), pp.
3159
3171
.10.1109/TPEL.2020.3013899
5.
Amano
,
H.
,
Baines
,
Y.
,
Beam
,
E.
,
Borga
,
M.
,
Bouchet
,
T.
,
Chalker
,
P. R.
,
Charles
,
M.
, et al.,
2018
, “
The 2018 GaN Power Electronics Roadmap
,”
J. Phys. D: Appl. Phys.
,
51
(
16
), p.
163001
.10.1088/1361-6463/aaaf9d
6.
Liang
,
Z.
,
Ning
,
P.
, and
Wang
,
F.
,
2014
, “
Development of Advanced all-SiC Power Modules
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2289
2295
.10.1109/TPEL.2013.2289395
7.
Broughton
,
J.
,
Smet
,
V.
,
Tummala
,
R. R.
, and
Joshi
,
Y. K.
,
2018
, “
Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
040801
.10.1115/1.4040828
8.
Khazaka
,
R.
,
Mendizabal
,
L.
,
Henry
,
D.
, and
Hanna
,
R.
,
2015
, “
Survey of High-Temperature Reliability of Power Electronics Packaging Components
,”
IEEE Trans. Power Electron.
,
30
(
5
), pp.
2456
2464
.10.1109/TPEL.2014.2357836
9.
McCluskey
,
P.
,
2012
, “
Reliability of Power Electronics Under Thermal Loading
,”
2012 7th International Conference on Integrated Power Electronics Systems
(
CIPS
),
Nuremberg, Germany, Mar. 6–8, pp.
1
8
.https://ieeexplore.ieee.org/document/6170625
10.
Kang
,
S. S.
,
2012
, “
Advanced Cooling for Power Electronics
,”
2012 7th International Conference on Integrated Power Electronics Systems (
CIPS
),
Nuremberg, Germany, Mar. 6–8, pp.
1
8
.https://ieeexplore.ieee.org/document/6170618
11.
Han
,
L.
,
Liang
,
L.
,
Zhang
,
Z.
, and
Kang
,
Y.
,
2023
, “
Understanding Inherent Implication of Thermal Resistance in Double Side Cooling Module
,”
IEEE Trans. Power Electron.
,
38
(
2
), pp.
2435
2445
.10.1109/TPEL.2022.3205598
12.
Vangoolen
,
R.
,
Rodriguez
,
R.
,
Cruz
,
M. F.
, and
Emadi
,
A.
,
2021
, “
Cold Plate Tool Development for Power Electronics in Aerospace Applications
,”
2021 IEEE Transportation Electrification Conference & Expo (ITEC)
, Chicago, IL, June 21–25, pp.
507
512
.10.1109/ITEC51675.2021.9490132
13.
Blinov
,
A.
,
Vinnikov
,
D.
, and
Lehtla
,
T.
,
2011
, “
Cooling Methods for High-Power Electronic Systems
,”
Power Electr. Eng.
,
29(1)
, pp.
79
86
.10.2478/v10144-011-0014-x
14.
Laloya
,
E.
,
Lucia
,
O.
,
Sarnago
,
H.
, and
Burdio
,
J. M.
,
2016
, “
Heat Management in Power Converters: From State of the Art to Future Ultrahigh Efficiency Systems
,”
IEEE Trans. Power Electron.
,
31
(
11
), pp.
7896
7908
.10.1109/TPEL.2015.2513433
15.
Schulz-Harder
,
J.
,
Exel
,
K.
, and
Meyer
,
A.
,
2006
, “
Direct Liquid Cooling of Power Electronics Devices
,”
4th International Conference on Integrated Power Systems
,
VDE
, Naples, Italy, June 7–9, pp.
1
6
.https://ieeexplore.ieee.org/document/5758077
16.
Ning
,
P.
,
Liang
,
Z.
, and
Wang
,
F.
,
2013
, “
Double-Sided Cooling Design for Novel Planar Module
,”
2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC
),
Long Beach, CA, Mar. 17–21, pp.
616
621
.10.1109/APEC.2013.6520274
17.
Klein
,
K.
,
Raemer
,
O.
,
Hoene
,
E.
,
Yasuda
,
Y.
,
Ito
,
H.
,
Kurita
,
F.
,
Enoki
,
M.
, et al.,
2020
, “
Low Inductive Full Ceramic SiC Power Module for High-Temperature Automotive Applications
,”
PCIM Europe Digital Days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management
,
VDE
, Germany, July 7–8, pp.
1
8
.https://ieeexplore.ieee.org/document/9178026
18.
Gupta
,
M. P.
,
Asheghi
,
M.
, and
Goodson
,
K.
,
2021
, “
Thermal Management – Embedded Single-Phase Liquid and Two-Phase Cooling
,”
2021 Technical Seminar of National Science Foundation Engineering Research Center for Power Optimization of Electro-Thermal Systems (POETS)
, Virtual, Sept. 16, pp.
25
38
.
19.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
20.
Yin
,
S.
,
Tseng
,
K. J.
, and
Zhao
,
J.
,
2013
, “
Design of AlN-Based Micro-Channel Heat Sink in Direct Bond Copper for Power Electronics Packaging
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
120
129
.10.1016/j.applthermaleng.2012.11.014
21.
Xu
,
L.
,
Liu
,
Y.
, and
Liu
,
S.
,
2014
, “
Modeling and Simulation of Power Electronic Modules With Microchannel Coolers for Thermo-Mechanical Performance
,”
Microelectron. Reliab.
,
54
(
12
), pp.
2824
2835
.10.1016/j.microrel.2014.07.053
22.
Jankowski
,
N. R.
,
Everhart
,
L.
,
Morgan
,
B.
,
Geil
,
B.
, and
McCluskey
,
P.
,
2007
, “
Comparing Microchannel Technologies to Minimize the Thermal Stack and Improve Thermal Performance in Hybrid Electric Vehicles
,”
2007 IEEE Vehicle Power and Propulsion Conference
,
Arlington, TX, Sept. 9–12, pp.
124
130
.10.1109/VPPC.2007.4544111
23.
Sharar
,
D. J.
,
Jankowski
,
N. R.
, and
Morgan
,
B.
,
2010
, “
Thermal Performance of a Direct-Bond-Copper Aluminum Nitride Manifold-Microchannel Cooler
,”
2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
),
Santa Clara, CA, Feb. 21–25, pp.
68
73
.10.1109/STHERM.2010.5444313
24.
Jung
,
K. W.
,
Kharangate
,
C. R.
,
Lee
,
H.
,
Palko
,
J.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
,
2019
, “
Embedded Cooling With 3D Manifold for Vehicle Power Electronics Application: Single-Phase Thermal-Fluid Performance
,”
Int. J. Heat Mass Transfer
,
130
, pp.
1108
1119
.10.1016/j.ijheatmasstransfer.2018.10.108
25.
Boteler
,
L.
,
Jankowski
,
N.
,
McCluskey
,
P.
, and
Morgan
,
B.
,
2012
, “
Numerical Investigation and Sensitivity Analysis of Manifold Microchannel Coolers
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7698
7708
.10.1016/j.ijheatmasstransfer.2012.07.073
26.
Ghani
,
I. A.
,
Sidik
,
N. A. C.
,
Kamaruzzaman
,
N.
,
Yahya
,
W. J.
, and
Mahian
,
O.
,
2017
, “
The Effect of Manifold Zone Parameters on Hydrothermal Performance of Micro-Channel HeatSink: A Review
,”
Int. J. Heat Mass Transfer
,
109
, pp.
1143
1161
.10.1016/j.ijheatmasstransfer.2017.03.007
27.
Luo
,
Y.
,
Zhang
,
J.
, and
Li
,
W.
,
2020
, “
A Comparative Numerical Study on Two-Phase Boiling Fluid Flow and Heat Transfer in the Microchannel Heat Sink With Different Manifold Arrangements
,”
Int. J. Heat Mass Transfer
,
156
, p.
119864
.10.1016/j.ijheatmasstransfer.2020.119864
28.
Lin
,
Y.
,
Luo
,
Y.
,
Li
,
W.
,
Cao
,
Y.
,
Tao
,
Z.
, and
Shih
,
T. I.
,
2021
, “
Single-Phase and Two-Phase Flow and Heat Transfer in Microchannel Heat Sink With Various Manifold Arrangements
,”
Int. J. Heat Mass Transfer
,
171
, p.
121118
.10.1016/j.ijheatmasstransfer.2021.121118
29.
Hazra
,
S.
,
Wei
,
T.
,
Lin
,
Y.
,
Asheghi
,
M.
,
Goodson
,
K.
,
Gupta
,
M. P.
, and
Degner
,
M.
,
2022
, “
Parametric Design Analysis of a Multi-Level 3D Manifolded Microchannel Cooler Via Reduced Order Numerical Modeling
,”
Int. J. Heat Mass Transfer
,
197
, p.
123356
.10.1016/j.ijheatmasstransfer.2022.123356
30.
Wei
,
T.
,
Hazra
,
S.
,
Lin
,
Y.
,
Gupta
,
M. P.
,
Degner
,
M.
,
Asheghi
,
M.
, and
Goodson
,
E. K.
,
2020
, “
Numerical Study of Large Footprint (24× 24mm2) Silicon-Based Embedded Microchannel 3D Manifold Coolers
,”
ASME J. Electron. Packag.
, 145(2), p.
021008
.10.1115/1.4055468
31.
Yang
,
M.
, and
Cao
,
B. Y.
,
2020
, “
Multi-Objective Optimization of a Hybrid Microchannel Heat Sink Combining Manifold Concept With Secondary Channels
,”
Appl. Therm. Eng.
,
181
, p.
115592
.10.1016/j.applthermaleng.2020.115592
32.
Gilmore
,
N.
,
Timchenko
,
V.
, and
Menictas
,
C.
,
2021
, “
Manifold Microchannel Heat Sink Topology Optimisation
,”
Int. J. Heat Mass Transfer
,
170
, p.
121025
.10.1016/j.ijheatmasstransfer.2021.121025
33.
Zhou
,
Y.
,
Nomura
,
T.
, and
Dede
,
E. M.
,
2020
, “
Topology Optimization of Manifold Microchannel Heat Sinks
,” 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
Orlando, FL, July 21–23, pp.
740
746
.10.1109/ITherm45881.2020.9190257
34.
Li
,
W.
,
2022
, “
Two-Phase Heat Transfer Correlations in Three-Dimensional Hierarchical Tube
,”
Int. J. Heat Mass Transfer
,
191
, p.
122827
.10.1016/j.ijheatmasstransfer.2022.122827
35.
Lin
,
Y.
,
Wei
,
T.
,
Moy
,
W. J.
,
Chen
,
H.
,
Gupta
,
M. P.
,
Asheghi
,
M.
,
H. Mantooth
,
H. A.
, and
Goodson
,
K.
,
2022
, “
Point-Contact Bonding of Integrated 3D Manifold Microchannel Cooling Within Direct Bonded Copper (DBC) Platform
,”
ASME J. Electron. Packag.
, epub.
You do not currently have access to this content.