Abstract

In a two-phase immersion cooling system, boiling on the spreader surface has been experimentally found to be nonuniform, and it is highly related to the surface temperature and the heat transfer coefficient. An experimentally obtained temperature-dependent boiling heat transfer coefficient has been applied to a numerical model to investigate the spreader's cooling performance. It is found that the surface temperature distribution becomes less uniform with higher input power. But it is more uniform when the thickness is increased. By defining the characteristic temperatures that represent different boiling regimes on the surface, the fraction of the surface area that has reached the critical heat flux has been numerically calculated, showing that increasing the thickness from 1 mm to 6 mm decreases the critical heat flux reached area by 23% at saturation liquid temperatures. Therefore, on the thicker spreader, more of the surface is utilized for nucleate boiling while localized hot regions that lead to surface dry-out are avoided. At a base temperature of 90 °C, the optimal thickness is found to be 4 mm, beyond which no significant improvement in heat removal can be obtained. Lower coolant temperatures can further increase the heat removal; it is reduced from an 18% improvement in the input power for the 1 mm case to only 3% in the 6 mm case for a coolant temperature drop of 24 °C. Therefore, a tradeoff exists between the cost of maintaining the low liquid temperature and the increased heat removal capacity.

References

1.
Wang
,
P.
,
McCluskey
,
P.
, and
Bar-Cohen
,
A.
,
2013
, “
Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module
,”
ASME J. Electron. Packag.
,
135
(
2
), p. 021001.10.1115/1.4023215
2.
Intel, 2021, “
Intel® Xeon® Platinum 9282 Processor (77M Cache, 2.60 GHz) 194146
,” Intel, Santa Clara, CA, accessed Feb. 28, 2021, https://www.intel.ca/content/www/ca/en/products/processors/xeon/scalable/platinum-processors/platinum-9282.html
3.
GeForce, 2021, “
GeForce RTX 30 Series Graphics Card Overview | NVIDIA
,” GeForce, Santa Clara, CA, accessed: Feb. 28, 2021, https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/
4.
Al Sayed
,
C.
,
Ghaffari
,
O.
,
Grenier
,
F.
,
Tong
,
W.
,
Bolduc
,
M.
,
Morissette
,
J.-F.
,
Jasmin
,
S.
, and
Sylvestre
,
J.
,
2020
, “
Localized Pool Boiling and Condensation Experiments Over Functional CPU: Optimizing the Overall Thermal Resistance Via Different Heat Transfer Scenarios
,” 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, July 21–23, pp.
410
416
.10.1109/ITherm45881.2020.9190371
5.
Ghaffari
,
O.
,
Grenier
,
F.
,
Morissette
,
J.-F.
,
Bolduc
,
M.
,
Jasmin
,
S.
, and
Sylvestre
,
J.
,
2019
, “
Pool Boiling Experiment of Dielectric Liquids and Numerical Study for Cooling a Microprocessor
,” 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
540
545
.10.1109/ITHERM.2019.8757380
6.
Chu
,
R. C.
,
2004
, “
The Challenges of Electronic Cooling: Past, Current and Future
,”
ASME J. Electron. Packag.
,
126
(
4
), pp.
491
500
.10.1115/1.1839594
7.
Ghaffari
,
O.
,
Al Sayed
,
C.
,
Vincent
,
M.
,
Nabavi-Larimi
,
Y.
,
Grenier
,
F.
,
Jasmin
,
S.
,
Fréchette
,
L.
, and
Sylvestre
,
J.
,
2021
, “
Two-Phase Closed-Loop Thermosyphon Filled With a Dielectric Liquid for Electronics Cooling Applications
,” 2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, June 1–4, pp.
74
81
.10.1109/ITherm51669.2021.9503149
8.
Wilson
,
L.
,
2013
, “
International Technology Roadmap for Semiconductors (ITRS
),”
Semicond. Ind. Assoc.
,
1
(2013 ed.), pp.
29
35
.
9.
El-Genk
,
M.
, and
Ali
,
A.
,
2013
, “
Advanced Spreaders for Enhanced Cooling of High Power Chips
,”
Front. Heat Mass Transfer
,
3
(
4
), pp.
1
14
.
10.
3M, 2021, “
Immersion Cooling with 3M Fluids for Data Centers | 3M-US
,” 3M, Saint Paul, MN, accessed Feb. 28, 2021, https://www.3m.com/3M/en_US/data-center-us/applications/immersion-cooling/
11.
Simons
,
E. R.
, “
Direct Liquid Immersion Cooling for High Power Density Microelectronics | Electronics Cooling
,” [Online], accessed Feb. 28, 2021, http://www.electronics-cooling.com/1996/05/direct-liquid-immersion-cooling-for-high-power-density-microelectronics/
12.
Danielson
,
R. D.
,
Krajewski
,
N.
, and
Brost
,
J.
,
1986
, “
Cooling a Superfast Computer
,”
Electron. Packag. Prod.
,
26
(
7
), pp.
44
45
.
13.
Al Sayed
,
C.
,
Ghaffari
,
O.
,
Nabavi-Larimi
,
Y.
,
Grenier
,
F.
,
Jasmin
,
S.
,
Fréchette
,
L.
, and
Sylvestre
,
J.
,
2021
, “
Two-Phase Immersion Cooling of Microprocessors With Electroplated Porous Heat Spreaders: Thermal Performance and Reliability
,” 2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, June 1–4, pp.
410
417
.10.1109/ITherm51669.2021.9503279
14.
Tuma
,
P. E.
,
2010
, “
The Merits of Open Bath Immersion Cooling of Datacom Equipment
,” 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), Santa Clara, CA, Feb. 21–25, pp.
123
131
.10.1109/STHERM.2010.5444305
15.
Allied Control, 2021, “
Allied Control | Immersion Cooling Solutions
,” [Online], accessed Feb. 28, 2021, https://www.allied-control.com/publications/Immersion_Cooling_Presentation_V3.pdf
16.
Olivier
,
J.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2012
, “
Two-Phase Cooling of Datacenters: Reduction in Energy Costs and Improved Efficiencies
,”
13th Brazilian Congress of Thermal Sciences and Engineering
, Brazil, Dec. 5–10, pp.
29
35
.
17.
Klein
,
G. J.
, and
Westwater
,
J. W.
,
1971
, “
Heat Transfer From Multiple Spines to Boiling Liquids
,”
AIChE J.
,
17
(
5
), pp.
1050
1056
.10.1002/aic.690170507
18.
Rainey
,
K. N.
, and
You
,
S. M.
,
2000
, “
Pool Boiling Heat Transfer From Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
509
516
.10.1115/1.1288708
19.
Parker
,
J. L.
, and
El-Genk
,
M. S.
,
2009
, “
Saturation Boiling of HFE-7100 Dielectric Liquid on Copper Surfaces With Corner Pins at Different Inclinations
,”
J. Enhanc. Heat Transfer
,
16
(
2
), pp.
103
122
.10.1615/JEnhHeatTransf.v16.i2.20
20.
Yu
,
C. K.
, and
Lu
,
D. C.
,
2007
, “
Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3624
3637
.10.1016/j.ijheatmasstransfer.2007.02.003
21.
Xu
,
Z. G.
, and
Zhao
,
C. Y.
,
2016
, “
Enhanced Boiling Heat Transfer by Gradient Porous Metals in Saturated Pure Water and Surfactant Solutions
,”
Appl. Therm. Eng.
,
100
, pp.
68
77
.10.1016/j.applthermaleng.2016.02.016
22.
Xu
,
Z. G.
, and
Zhao
,
C. Y.
,
2015
, “
Experimental Study on Pool Boiling Heat Transfer in Gradient Metal Foams
,”
Int. J. Heat Mass Transfer
,
85
, pp.
824
829
.10.1016/j.ijheatmasstransfer.2015.02.017
23.
Pranoto
,
I.
,
Leong
,
K. C.
, and
Jin
,
L. W.
,
2012
, “
The Role of Graphite Foam Pore Structure on Saturated Pool Boiling Enhancement
,”
Appl. Therm. Eng.
,
42
, pp.
163
172
.10.1016/j.applthermaleng.2012.03.001
24.
Honda
,
H.
,
Takamastu
,
H.
, and
Wei
,
J. J.
,
2002
, “
Enhanced Boiling of FC-72 on Silicon Chips With Micro-Pin-Fins and Submicron-Scale Roughness
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
383
390
.10.1115/1.1447937
25.
Honda
,
H.
,
Takamatsu
,
H.
, and
Wei
,
J. J.
,
2003
, “
Enhanced Boiling Heat Transfer From Silicon Chips With Micro-Pin Fins Immersed in FC-72
,”
J. Enhanced Heat Transfer
,
10
(
2
), pp.
211
224
.10.1615/JEnhHeatTransf.v10.i2.70
26.
You
,
S. M.
,
Simon
,
T. W.
, and
Bar-Cohen
,
A.
,
1992
, “
A Technique for Enhancing Boiling Heat Transfer With Application to Cooling of Electronic Equipment
,”
[1992 Proceedings] Intersociety Conference on Thermal Phenomena in Electronic Systems
, Austin, TX, Feb. 5–8, pp.
66
73
.10.1109/33.180048
27.
O'Connor
,
J. P.
,
You
,
S. M.
, and
Price
,
D. C.
,
1995
, “
A Dielectric Surface Coating Technique to Enhance Boiling Heat Transfer From High Power Microelectronics
,”
IEEE Trans. Compon., Packag. Manuf. Technol. Part A
,
18
(
3
), pp.
656
663
.10.1109/95.465166
28.
Jie Liu
,
J.
,
Zhang
,
H.
,
Yao
,
S. C.
, and
Li
,
Y.
,
2014
, “
Porous Media Modeling of Two-Phase Microchannel Cooling of Electronic Chips With Nonuniform Power Distribution
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021008
.10.1115/1.4027420
29.
Nakayama
,
W.
,
Daikoku
,
T.
, and
Nakajima
,
T.
,
1982
, “
Effects of Pore Diameters and System Pressure on Saturated Pool Nucleate Boiling Heat Transfer from Porous Surfaces
,”
ASME J. Heat Transfer-Trans.-Trans. ASME
, 104(2), pp.
286
291
.10.1115/1.3245085
30.
El-Genk
,
M. S.
, and
Suszko
,
A.
,
2016
, “
Effects of Inclination Angle and Liquid Subcooling on Nucleate Boiling on Dimpled Copper Surfaces
,”
Int. J. Heat Mass Transfer
,
95
, pp.
650
661
.10.1016/j.ijheatmasstransfer.2015.12.048
31.
Ghaffari
,
O.
,
Tong
,
W.
,
Nabavi-Larimi
,
Y.
,
Sayed
,
C. Al
,
Ganjali
,
A.
,
Morissette
,
J.-F.
,
Grenier
,
F.
,
Jasmin
,
S.
,
Fréchette
,
L.
, and
Sylvestre
,
J.
,
2021
, “
Experimental Investigation of the Effect of Heat Spreading on Boiling of a Dielectric Liquid for Immersion Cooling of Electronics
,”
ASME J. Electron. Packag.
,
143
(
4
), p.
041103
.10.1115/1.4051943
32.
Ellison
,
G. N.
,
2003
, “
Maximum Thermal Spreading Resistance for Rectangular Sources and Plates With Nonunity Aspect Ratios
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
2
), pp.
439
454
.10.1109/TCAPT.2003.815088
33.
Yovanovich
,
M. M.
,
Muzychka
,
Y. S.
, and
Culham
,
J. R.
,
1999
, “
Spreading Resistance of Isoflux Rectangles and Strips on Compound Flux Channels
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
495
500
.10.2514/2.6467
34.
Song
,
S.
,
Au
,
V.
, and
Moran
,
K. P.
,
1995
, “
Constriction/Spreading Resistance Model for Electronics Packaging
,”
ASME/JSME Thermal Engineering Conference
, Lahaina, Maui, HI, Mar. 19–24, Vol. 4, pp.
199
206
.https://file.elecfans.com/web1/M00/20/C0/ooYBAFmk1LSAMH2xAAOv1ilC3UE457.pdf
35.
Suszko
,
A.
, and
El-Genk
,
M. S.
,
2016
, “
Thermally Anisotropic Composite Heat Spreaders for Enhanced Thermal Management of High-Performance Microprocessors
,”
Int. J. Therm. Sci.
,
100
, pp.
213
228
.10.1016/j.ijthermalsci.2015.09.018
36.
El-Genk
,
M. S.
, and
Saber
,
H. H.
,
2008
, “
Composite Spreader for Cooling Computer Chip With Non-Uniform Heat Dissipation
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
1
), pp.
165
172
.10.1109/TCAPT.2008.916847
37.
El-Genk
,
M. S.
,
2012
, “
Immersion Cooling Nucleate Boiling of High Power Computer Chips
,”
Energy Convers. Manag.
,
53
(
1
), pp.
205
218
.10.1016/j.enconman.2011.08.008
38.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer (Thesis)
,” United States Atomic Energy Commission, Technical Information Service, Report No.
4439, AECU-4439
.10.2172/4175511
39.
Ansys, 2021, “
Ansys Mechanical: Finite Element Analysis (FEA) Software | Ansys
,” Ansys, Canonsburg, PA, accessed Feb. 28, 2021, https://www.ansys.com/products/structures/ansys-mechanical
You do not currently have access to this content.