Abstract

The reliability of solder joints plays a critical role in electronic assemblies. SnAgCu solder alloys with doped elements such as Bi and Sb is one of the candidates for high reliability applications. However, the mechanical and fatigue properties of the actual solder joint structure have not been studied for these new alloys. In this paper, a cyclic fatigue test was conducted on individual real solder joints of different alloys, including SnAgCu, SnCu–Bi, SnAgCu–Bi, and SnAgCu–BiSb. The fatigue property of those solder joints was analyzed based on the characteristic fatigue life and stress–strain, hysteresis, loops. The results show that solder joints with both Ag and Bi content have a better fatigue resistance than the solder joints with Ag or Bi content only. The results of SnAgCu and SnCu–Bi solder alloys show similar fatigue performance. Also, the fatigue performance of SnAgCu–Bi is close to SnAgCu–BiSb in the accelerated test. But the SnAgCu–Bi alloy is estimated to have a longer characteristic life under low-stress amplitude cycling. The microstructure analysis shows a bismuth-rich phase formed around the Ag3Sn precipitates. Adding bismuth in the solder alloy can significantly improve the fatigue properties through solid solution hardenings. On another hand, the plastic strain range and work dissipation were measured from the hysteresis loops for all tests. The Morrow Energy and the Coffin–Manson models were developed from the fitted data to predict the fatigue life as a function of work dissipation and plastic strain range.

References

1.
Kotadia
,
H. R.
,
Howes
,
P. D.
, and
Mannan
,
S. H.
,
2014
, “
A Review: On the Development of Low Melting Temperature Pb-Free Solders
,”
Microelectron. Reliab.
,
54
(
6–7
), pp.
1253
1273
.10.1016/j.microrel.2014.02.025
2.
Li
,
Y.
, and
Chan
,
Y. C.
,
2015
, “
Effect of Silver (Ag) Nanoparticle Size on the Microstructure and Mechanical Properties of Sn58Bi–Ag Composite Solders
,”
J. Alloys Compd.
,
645
, pp.
566
576
.10.1016/j.jallcom.2015.05.023
3.
Zhang
,
L.
, and
Tu
,
K. N.
,
2014
, “
Structure and Properties of Lead-Free Solders Bearing Micro and Nano Particles
,”
Mater. Sci. Eng.
,
82
, pp.
1
32
.10.1016/j.mser.2014.06.001
4.
Zhang
,
L.
,
Xue
,
S. B.
,
Zeng
,
G.
,
Gao
,
L. L.
, and
Ye
,
H.
,
2012
, “
Interface Reaction Between SnAgCu/SnAgCuCe Solders and Cu Substrate Subjected to Thermal Cycling and Isothermal Aging
,”
J. Alloys Compd.
,
510
(
1
), pp.
38
45
.10.1016/j.jallcom.2011.08.044
5.
Zhang
,
L.
,
Fan
,
X.
,
He
,
C.
, and
Guo
,
Y.
,
2013
, “
Intermetallic Compound Layer Growth Between SnAgCu Solder and Cu Substrate in Electronic Packaging
,”
J. Mater. Sci.
,
24
(
9
), pp.
3249
3254
.10.1007/s10854-013-1236-9
6.
Batiha
,
F.
,
Hamasha
,
S.
,
Jaradat
,
Y.
,
Wentlent
,
L.
,
Qasaimeh
,
A.
, and
Borgesen
,
P.
,
2015
, “
Challenges for the Prediction of Solder Joint Life in Long Term Vibration
,” IEEE 65th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 26–29, pp. 1553–1159.10.1109/ECTC.2015.7159804
7.
Vianco
,
P. T.
, and
Rejent
,
J. A.
,
1999
, “
Properties of Ternary Sn-Ag-Bi Solder Alloys: Part I—Thermal Properties and Microstructural Analysis
,”
J. Electron. Mater.
,
28
(
10
), pp.
1127
1137
.10.1007/s11664-999-0250-4
8.
Mookam
,
N.
, and
Kanlayasiri
,
K.
,
2012
, “
Evolution of Intermetallic Compounds Between Sn-0.3 Ag-0.7 Cu Low-Silver Lead-Free Solder and Cu Substrate During Thermal Aging
,”
J. Mater. Sci. Technol.
,
28
(
1
), pp.
53
59
.10.1016/S1005-0302(12)60023-1
9.
Maalekian
,
M.
,
Xu
,
Y.
, and
Seelig
,
K.
,
2015
, “
Efect of Bi Content on Properties of Low Silver SAC Solder
,”
AIM Metals & Alloys Montreal
, SMTA International Conference Proceedings,
Rosemont IL, Sept. 27–Oct. 1
.http://www.circuitinsight.com/pdf/effect_bi_content_properties_smta.pdf
10.
Coyle
,
R.
,
Parker
,
R.
,
Arfaei
,
B.
,
Mutuku
,
F.
,
Sweatman
,
K.
,
Howell
,
K.
,
Longgood
,
S.
, and
Benedetto
,
E.
,
2014
, “
The Effect of Nickel Microalloying on Thermal Fatigue Reliability and Microstructure of SAC105 and SAC205 Solders
,” IEEE 64th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 27–30.10.1109/ECTC.2014.6897320
11.
Pandher
,
R. S.
,
Lewis
,
B. G.
,
Vangaveti
,
R.
, and
Singh
,
B.
,
2007
, “
Drop Shock Reliability of Lead-Free Alloys—Effect of Micro-Additives
,”
Proceedings 57th Electronic Components and Technology Conference
, Reno, NV, May 29–June 1.10.1109/ECTC.2007.373868
12.
Ye
,
L.
,
Lai
,
Z. H.
,
Liu
,
J.
, and
Thölén
,
A.
,
2001
, “
Microstructure Investigation of Sn‐0.5Cu‐3.5Ag and Sn‐3.5Ag‐0.5Cu‐0.5B Lead‐Free Solders
,”
Soldering Surf. Mount Technol.
,
13
(
3
), pp.
16
20
.10.1108/EUM0000000006025
13.
Shnawah
,
D. A.
,
Sabri
,
M. F. M.
, and
Badruddin
,
I. A.
,
2012
, “
The Limited Reliability of Board-Level SAC Solder Joints Under Both Mechanical and Thermo-Mechanical Loads
,”
Informacije Midem
,
42
(
1
), pp.
3
10
.http://www.midem-drustvo.si/Journal%20papers/MIDEM_42(2012)1p3.pdf
14.
Abdul Ameer Shnawah
,
D.
,
Faizul Bin Mohd Sabri
,
M.
,
Anjum Badruddin
,
I.
, and
Said
,
S.
,
2012
, “
A Review on Effect of Minor Alloying Elements on Thermal Cycling and Drop Impact Reliability of Low‐Ag Sn‐Ag‐Cu Solder Joints
,”
Microelectron. Int.
,
29
(
1
), pp.
47
57
.10.1108/13565361211219202
15.
Mahdavifard
,
M. H.
,
Sabri
,
M. F. M.
,
Shnawah
,
D. A.
,
Said
,
S. M.
,
Badruddin
,
I. A.
, and
Rozali
,
S.
,
2015
, “
The Effect of Iron and Bismuth Addition on the Microstructural, Mechanical, and Thermal Properties of Sn–1Ag–0.5Cu Solder Alloy
,”
Microelectron. Reliab.
,
55
(
9–10
), pp.
1886
1890
.10.1016/j.microrel.2015.06.134
16.
Shnawah
,
D. A.
,
Sabri
,
M. F. M.
,
Badruddin
,
I. A.
,
Said
,
S. B. M.
,
Ariga
,
T.
, and
Che
,
F. X.
,
2013
, “
Effect of Ag Content and the Minor Alloying Element Fe on the Mechanical Properties and Microstructural Stability of Sn-Ag-Cu Solder Alloy Under High-Temperature Annealing
,”
J. Electron. Mater.
,
42
(
3
), pp.
470
484
.10.1007/s11664-012-2343-8
17.
Liu
,
W.
,
Lee
,
N.-C.
,
Porras
,
A.
,
Ding
,
M.
,
Gallagher
,
A.
,
Huang
,
A.
,
Chen
,
S.
, and
Lee
,
J. C. B.
,
2009
, “
Achieving High Reliability Low Cost Lead-Free SAC Solder Joints Via Mn or Ce Doping
,”
59th Electronic Components and Technology Conference
, San Diego, CA, May 26–29.10.1109/ECTC.2009.5074134
18.
Abdul‐Ameer Shnawah
,
D.
,
Faizul Mohd Sabri
,
M.
,
Anjum Badruddin
,
I.
, and
Xing Che
,
F.
,
2012
, “
The Bulk Alloy Microstructure and Tensile Properties of Sn‐1Ag‐0.5Cu‐xAl Lead‐Free Solder Alloys (x=0, 1, 1.5 and 2 wt %)
,”
Microelectron. Int.
,
29
(
2
), pp.
108
116
.10.1108/13565361211237716
19.
Gain
,
A. K.
,
Fouzder
,
T.
,
Chan
,
Y. C.
,
Sharif
,
A.
,
Wong
,
N. B.
, and
Yung
,
W. K. C.
,
2010
, “
The Influence of Addition of Al Nano-Particles on the Microstructure and Shear Strength of Eutectic Sn–Ag–Cu Solder on Au/Ni Metallized Cu Pads
,”
J. Alloys Compd.
,
506
(
1
), pp.
216
223
.10.1016/j.jallcom.2010.06.180
20.
Song
,
H. Y.
,
Zhu
,
Q. S.
,
Wang
,
Z. G.
,
Shang
,
J. K.
, and
Lu
,
M.
,
2010
, “
Effects of Zn Addition on Microstructure and Tensile Properties of Sn–1Ag–0.5Cu Alloy
,”
Mater. Sci. Eng.
,
527
(
6
), pp.
1343
1350
.10.1016/j.msea.2009.10.048
21.
El-Daly
,
A. A.
,
Hammad
,
A. E.
,
Al-Ganainy
,
G. S.
, and
Ragab
,
M.
,
2014
, “
Influence of Zn Addition on the Microstructure, Melt Properties and Creep Behavior of Low Ag-Content Sn–Ag–Cu Lead-Free Solders
,”
Mater. Sci. Eng.
,
608
, pp.
130
138
.10.1016/j.msea.2014.04.070
22.
He
,
M.
,
Ekpenuma
,
S. N.
, and
Acoff
,
V. L.
,
2008
, “
Microstructure and Creep Deformation of Sn-Ag-Cu-Bi/Cu Solder Joints
,”
J. Electron. Mater.
,
37
(
3
), pp.
300
306
.10.1007/s11664-007-0368-1
23.
Hodúlová
,
E.
,
Palcut
,
M.
,
Lechovič
,
E.
,
Šimeková
,
B.
, and
Ulrich
,
K.
,
2011
, “
Kinetics of Intermetallic Phase Formation at the Interface of Sn–Ag–Cu–X (X=Bi, in) Solders With Cu Substrate
,”
J. Alloys Compd.
,
509
(
25
), pp.
7052
7059
.10.1016/j.jallcom.2011.03.164
24.
Li
,
G. Y.
,
Chen
,
B. L.
,
Shi
,
X. Q.
,
Wong
,
S. C. K.
, and
Wang
,
Z. F.
,
2006
, “
Effects of Sb Addition on Tensile Strength of Sn–3.5Ag–0.7Cu Solder Alloy and Joint
,”
Thin Solid Films
,
504
(
1–2
), pp.
421
425
.10.1016/j.tsf.2005.09.060
25.
Zhao
,
J.
,
Qi
,
L.
,
Wang
,
X.
, and
Wang
,
L.
,
2004
, “
Influence of Bi on Microstructures Evolution and Mechanical Properties in Sn–Ag–Cu Lead-Free Solder
,”
J. Alloys Compd.
,
375
(
1–2
), pp.
196
201
.10.1016/j.jallcom.2003.12.005
26.
Gao
,
L.
,
Xue
,
S.
,
Zhang
,
L.
,
Sheng
,
Z.
,
Ji
,
F.
,
Dai
,
W.
,
Yu
,
S-L.
, and
Zeng
,
G.
,
2010
, “
Effect of Alloying Elements on Properties and Microstructures of SnAgCu Solders
,”
Microelectron. Eng.
,
87
(
11
), pp.
2025
2034
.10.1016/j.mee.2010.04.007
27.
Zhao
,
J.
,
Mutoh
,
Y.
,
Miyashita
,
Y.
, and
Mannan
,
S. L.
,
2002
, “
Fatigue Crack-Growth Behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi Lead-Free Solders
,”
J. Electron. Mater.
,
31
(
8
), pp.
879
886
.10.1007/s11664-002-0199-z
28.
Rizvi
,
M. J.
,
Chan
,
Y. C.
,
Bailey
,
C.
,
Lu
,
H.
, and
Islam
,
M. N.
,
2006
, “
Effect of Adding 1 wt% Bi Into the Sn–2.8Ag–0.5Cu Solder Alloy on the Intermetallic Formations With Cu-Substrate During Soldering and Isothermal Aging
,”
J. Alloys Compd.
,
407
(
1–2
), pp.
208
214
.10.1016/j.jallcom.2005.06.050
29.
Kanlayasiri
,
K.
, and
Kongchayasukawat
,
R.
,
2018
, “
Property Alterations of Sn-0.6Cu-0.05Ni-Ge Lead-Free Solder by Ag, Bi, in and Sb Addition
,”
Trans. Nonferrous Met. Soc. China
,
28
(
6
), pp.
1166
1175
.10.1016/S1003-6326(18)64754-5
30.
Kariya
,
Y.
, and
Otsuka
,
M.
,
1998
, “
Effect of Bismuth on the Isothermal Fatigue Properties of Sn-3.5mass%Ag Solder Alloy
,”
J. Electron. Mater.
,
27
(
7
), pp.
866
870
.10.1007/s11664-998-0111-6
31.
Kanchanomai
,
C.
,
Miyashita
,
Y.
, and
Mutoh
,
Y.
,
2002
, “
Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi Lead-Free Solders
,”
J. Electron. Mater.
,
31
(
5
), pp.
456
465
.10.1007/s11664-002-0100-0
32.
Zhao
,
J.
,
Cheng
,
C.
,
Qi
,
L.
, and
Chi
,
C.
,
2009
, “
Kinetics of Intermetallic Compound Layers and Shear Strength in Bi-Bearing SnAgCu/Cu Soldering Couples
,”
J. Alloys Compd.
,
473
(
1–2
), pp.
382
388
.10.1016/j.jallcom.2008.05.082
33.
El-Daly
,
A. A.
,
El-Taher
,
A. M.
, and
Gouda
,
S.
,
2015
, “
Development of New Multicomponent Sn–Ag–Cu–Bi Lead-Free Solders for Low-Cost Commercial Electronic Assembly
,”
J. Alloys Compd.
,
627
, pp.
268
275
.10.1016/j.jallcom.2014.12.034
34.
Hamasha
,
S.
,
Jaradat
,
Y.
,
Qasaimeh
,
A.
,
Obaidat
,
M.
, and
Borgesen
,
P.
,
2014
, “
Assessment of Solder Joint Fatigue Life Under Realistic Service Conditions
,”
J. Electron. Mater.
,
43
(
12
), pp.
4472
4484
.10.1007/s11664-014-3436-3
35.
Hamasha
,
S.
,
Wentlent
,
L.
, and
Borgesen
,
P.
,
2015
, “
Statistical Variations of Solder Joint Fatigue Life Under Realistic Service Conditions
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
5
(
9
), pp.
1284
1291
.10.1109/TCPMT.2015.2460244
36.
Su, S., Akkara, F., Abueed, M., Jian, M., Hamasha, S., Suhling, J., and Lall, P., 2018, “Fatigue Properties of Lead-Free Doped Solder Joints,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1, pp. 1243–1248.10.1109/ITHERM.2018.8419566
37.
Su
,
S.
,
Fu
,
N.
,
John Akkara
,
F.
, and
Hamasha
,
S.
,
2018
, “
Effect of Long-Term Room Temperature Aging on the Fatigue Properties of SnAgCu Solder Joint
,”
ASME J. Electron. Packag.
,
140
(
3
), p.
031005
.10.1115/1.4040105
38.
Hamasha
,
S.
,
Su
,
S.
,
Akkara
,
F.
,
Dawahdeh
,
A.
,
Borgesen
,
P.
, and
Qasaimeh
,
A.
,
2017
, “
Solder Joint Reliability in Isothermal Varying Load Cycling
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2.10.1109/ITHERM.2017.7992636
39.
Borgesen
,
P.
,
Hamasha
,
S.
,
Obaidat
,
M.
,
Raghavan
,
V.
,
Dai
,
X.
,
Meilunas
,
M.
, and
Anselm
,
M.
,
2013
, “
Solder Joint Reliability Under Realistic Service Conditions
,”
Microelectron. Reliab.
,
53
(
9–11
), pp.
1587
1591
.10.1016/j.microrel.2013.07.091
40.
Hamasha
,
S.
,
Qasaimeh
,
A.
,
Jaradat
,
Y.
, and
Borgesen
,
P.
,
2015
, “
Correlation Between Solder Joint Fatigue Life and Accumulated Work in Isothermal Cycling
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
5
(
9
), pp.
1292
1299
.10.1109/TCPMT.2015.2453989
41.
Qasaimeh
,
A.
,
Hamasha
,
S.
,
Jaradat
,
Y.
, and
Borgesen
,
P.
,
2015
, “
Damage Evolution in Lead Free Solder Joints in Isothermal Fatigue
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021012
.10.1115/1.4029441
42.
Obaidat
,
M.
,
Hamasha
,
S.
,
Jaradat
,
Y.
,
Qasaimeh
,
A.
,
Arfaei
,
B.
,
Anselm
,
M.
, and
Borgesen
,
P.
,
2013
, “
Effects of Varying Amplitudes on the Fatigue Life of Lead Free Solder Joints
,”
IEEE 63rd Electronic Components and Technology Conference
, Las Vegas, NV, May 28–31.10.1109/ECTC.2013.6575741
43.
Akkara
,
F.
,
Su.
,
S.
,
Thirugnanasambandam
,
S.
,
Sridhar
,
S.
,
Dawahdeh
,
A.
,
Hamasha
,
S.
,
Qasaimeh
,
A.
, and
Evans
,
J.
,
2017
, “Effects of Long-Term Aging on SnAgCu Solder Joints Reliability in Mechanical Cycling Fatigue,” SMTA International Conference Proceedings (
SMTAI
), Chicago, IL, Sept. 17–21.https://www.smta.org/knowledge/proceedings_abstract.cfm?PROC_ID=5031
44.
Hamasha
,
S.
, and
Borgesen
,
P.
,
2016
, “
Effects of Strain Rate and Amplitude Variations on Solder Joint Fatigue Life in Isothermal Cycling
,”
ASME J. Electron. Packag.
,
138
(
2
), p.
021002
.10.1115/1.4032881
45.
Morrow
,
J.
,
1965
, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
Intern. Frict., Damping, Cycl. Plast.
, B. Lazan, ed., ASTM International, West Conshohocken, PA, pp.
45
87
.10.1520/STP43764S
46.
Coffin
,
L. F.
, Jr.
,
1954
, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. Am. Soc. Mech. Eng.
, New York,
76
, pp.
931
950
.https://www.osti.gov/biblio/4363016-study-effects-cyclic-thermal-stresses-ductile-metal
47.
Liu
,
S.
,
McDonald
,
S.
,
Sweatman
,
K.
, and
Nogita
,
K.
,
2018
, “
The Effects of Precipitation Strengthening and Solid Solution Strengthening on Strain Rate Sensitivity of Lead-Free Solders
,”
Rev. Microelectron. Reliab.
,
84
, pp.
170
180
.10.1016/j.microrel.2018.03.038
You do not currently have access to this content.