Gallium-based liquid metal (LM) inherits excellent thermophysical properties and pollution-free characteristics. However, it has long been a fatal problem that LM would cause serious corrosion and embrittlement on the classical substrate made of aluminum alloys in constructing chip cooling device. Here, anodic oxidation treatment was introduced on processing the aluminum alloy aiming to tackle the corrosion issues. The prepared anodic oxidation aluminum (AAO) coatings were composed of nanopore layers and barrier layers on a high-purity alumina matrix that were manufactured electrochemically. According to the measurement, the effective thermal conductivity of the anodized aluminum alloy increases with the total thickness of sample increasing. When the total thickness L exceeds 5 × 10−3 m, effects of the porous media on effective thermal conductivity are negligible via model simulation and calculation. It was experimentally found that aluminum alloy after surface anodization treatment presented excellent corrosion resistance and outstanding heat transfer performance even when exposed in eutectic gallium–indium (E-GaIn) LM over 200 °C. The convective heat transfer coefficient of LM for anodized sample reached the peak when the heat load is 33.3 W.

References

1.
Hojna
,
A.
,
Gabriele
,
F. D.
, and
Klecka
,
J.
,
2016
, “
Characteristics and Liquid Metal Embrittlement of the Steel T91 in Contact With Lead–Bismuth Eutectic
,”
J. Nucl. Mater.
,
472
(
26
), pp.
163
170
.
2.
Klok
,
O.
,
Lambrinou
,
K.
,
Gavrilov
,
S.
,
Lim
,
J.
, and
Graeve
,
I. D.
,
2018
, “
Effect of Lead-Bismuth Eutectic Oxygen Concentration on the Onset of Dissolution Corrosion in 316 L Austenitic Stainless Steel at 450 °C
,”
ASME J. Nucl. Rad. Sci.
,
4
(
3
), p.
031019
.
3.
Ariyoshi
,
G.
,
Ito
,
D.
,
Saito
,
Y.
, and
Mishima
,
K.
,
2016
, “
Turbulent Characteristics in Lead-Bismuth Flows Flowing in Poor and Good Wettability Pipes
,”
ASME
Paper No. ICONE24-60488.
4.
Morley
,
N. B.
,
Burris
,
J.
,
Cadwallader
,
L. C.
, and
Nornberg
,
M. D.
,
2008
, “
GaInSn Usage in the Research Laboratory
,”
Rev. Sci. Instrum.
,
79
(
5
), pp.
112
192
.
5.
Li
,
P. P.
, and
Liu
,
J.
,
2011
, “
Self-Driven Electronic Cooling Based on Thermosyphon Effect of Room Temperature Liquid Metal
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041009
.
6.
Zhang
,
X. D.
,
Sun
,
Y.
,
Chen
,
S.
, and
Liu
,
J.
,
2018
, “
Unconventional Hydrodynamics of Hybrid Fluid Made of Liquid Metals and Aqueous Solution Under Applied Fields
,”
Front. Energy
,
12
(
2
), pp.
276
296
.
7.
Deng
,
Y. G.
, and
Liu
,
J.
,
2010
, “
Design of Practical Liquid Metal Cooling Device for Heat Dissipation of High Performance CPUs
,”
ASME J. Electron. Packag.
,
132
(
3
), p.
031009
.
8.
Hodes
,
M.
,
Zhang
,
R.
,
Lam
,
L. S.
,
Wilcoxon
,
R.
, and
Lower
,
N.
,
2014
, “
On the Potential of Galinstan-Based Minichannel and Minigap Cooling
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
1
), pp.
46
56
.
9.
Ma
,
K. Q.
, and
Liu
,
J.
,
2007
, “
Liquid Metal Cooling in Thermal Management of Computer Chip
,”
Front. Energy Power Eng. China
,
1
(
4
), pp.
384
402
.
10.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy Convers. Manage.
,
150
, pp.
304
330
.
11.
Yang
,
X. H.
,
Tan
,
S. C.
, and
Liu
,
J.
,
2016
, “
Thermal Management of Li-Ion Battery With Liquid Metal
,”
Energy Convers. Manage.
,
117
, pp.
577
585
.
12.
Hartl
,
D. J.
,
Galvan
,
E.
,
Malak
,
R. J.
, and
Baur
,
J. W.
,
2016
, “
Parameterized Design Optimization of a Magnetohydrodynamic Liquid Metal Active Cooling Concept
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031402
.
13.
Cheng
,
Y.
,
Guo
,
Y. L.
,
He
,
Z. Z.
,
Tang
,
C. Y.
,
Liu
,
X.
,
Ma
,
Y. F.
, and
Liu
,
J.
,
2016
, “
Application Research of Phase Change Material Heat Removal Technology for Compact High Efficiency Diode Pumped Laser
,”
Chin. J. Lasers
,
43
(
1
), p.
0102005
.
14.
Gao
,
Y. X.
, and
Liu
,
J.
,
2012
, “
Gallium-Based Thermal Interface Material With High Compliance and Wettability
,”
Appl. Phys. A
,
107
(
3
), pp.
701
708
.
15.
Mei
,
S. F.
,
Gao
,
Y. X.
,
Deng
,
Z. S.
, and
Liu
,
J.
,
2014
, “
Thermally Conductive and Highly Electrically Resistive Grease Through Homogeneously Dispersing Liquid Metal Droplets Inside Methyl Silicone Oil
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
011009
.
16.
Gao
,
Y. X.
,
Wang
,
X. P.
,
Liu
,
J.
, and
Fang
,
Q. F.
,
2017
, “
Investigation on the Optimized Binary and Ternary Gallium Alloy as Thermal Interface Materials
,”
ASME J. Electron. Packag.
,
139
(
1
), p.
011002
.
17.
Fu
,
H. T.
,
Huang
,
Y.
,
Wu
,
H. W.
,
Yang
,
Y. W.
, and
Zong
,
M.
,
2016
, “
Synthesis by Vacuum Infiltration, Microstructure, and Thermo-Physical Properties of Graphite-Aluminum Composite
,”
Adv. Eng. Mater.
,
18
(
9
), pp.
1609
1615
.
18.
Jiang
,
G. W.
,
Huang
,
J. H.
,
Liu
,
M. C.
, and
Cao
,
M.
,
2017
, “
Experiment and Simulation of Thermal Management for a Tube-Shell Li-Ion Battery Pack With Composite Phase Change Material
,”
Appl. Therm. Eng.
,
120
, pp.
1
9
.
19.
Chakravarthii
,
D. M. K.
,
Devarajan
,
M.
,
Suvindraj
,
K.
, and
Choo
,
C. L.
,
2017
, “
Thermal Characterization of LEDs Mounted on Substrates With Converging-Diverging and Diverging-Converging Channels
,”
IEEE Trans. Electron Devices
,
64
(
8
), pp.
3308
3315
.
20.
Lu
,
J. R.
,
Yu
,
W. B.
,
Tan
,
S. C.
,
Wang
,
L.
,
Yang
,
X. H.
, and
Liu
,
J.
,
2017
, “
Controlled Hydrogen Generation Using Interaction of Artificial Seawater With Aluminum Plates Activated by Liquid Ga-in Alloy
,”
RSC Adv.
,
7
(
49
), pp.
30839
30844
.
21.
Senel
,
E.
,
Walmsley
,
J. C.
,
Diplas
,
S.
, and
Nisancioglu
,
K.
,
2014
, “
Liquid Metal Embrittlement of Aluminium by Segregation of Trace Element Gallium
,”
Corros. Sci.
,
85
(
4
), pp.
167
173
.
22.
Mingear
,
J.
, and
Hartl
,
D.
,
2017
, “
Corrosion of Nickel-Titanium, C110, and Al6061 in Gallium-Based Liquid Metal Alloys
,”
TMS 2017 146th Annual Meeting and Exhibition Supplemental Proceedings
, San Diego, CA, Feb. 26–Mar. 2, pp.
587
596
.
23.
Deng
,
Y. G.
, and
Liu
,
J.
,
2009
, “
Corrosion Development Between Liquid Gallium and Four Typical Metal Substrates Used in Chip Cooling Device
,”
Appl. Phys. A
,
95
(
3
), pp.
907
915
.
24.
Liu
,
J.
,
Zhou
,
Y. X.
,
Lv
,
Y. G.
, and
Li
,
T.
,
2005
, “
Liquid Metal Based Miniaturized Chip-Cooling Device Driven by Electromagnetic
,”
ASME
Paper No. IMECE2005-80188.
25.
Li
,
P. P.
,
Liu
,
J.
, and
Zhou
,
Y. X.
,
2014
, “
Design of a Self-Driven Liquid Metal Cooling Device for Heat Dissipation of Hot Chips in a Closed Cabinet
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
011009
.
26.
Cataldo
,
F.
, and
Thome
,
J. R.
,
2018
, “
Experimental Performance of a Completely Passive Thermosyphon Cooling System Rejecting Heat by Natural Convection Using the Working Fluids R1234ze, R1234yf, and R134a
,”
ASME J. Electron. Packag.
,
140
(
2
), p.
021002
.
27.
Zheng
,
S. L.
,
Li
,
C.
,
Fu
,
Q. T.
,
Xiang
,
T. F.
,
Hu
,
W.
,
Wang
,
J.
,
Ding
,
S. B.
,
Liu
,
P. J.
, and
Chen
,
Z.
,
2016
, “
Fabrication of a Micro-Nanostructured Superhydrophobic Aluminum Surface With Excellent Corrosion Resistance and Anti-Icing Performance
,”
RSC Adv.
,
6
(
83
), pp.
79389
79400
.
28.
Ali
,
H. O.
,
2017
, “
Review of Porous Anodic Aluminum Oxide (AAO) Applications for Sensors, MEMS and Biomedical Devices
,”
Trans. Inst. Met. Finish.
,
95
(
6
), pp.
290
296
.
29.
Sugio
,
K.
,
Choi
,
Y. B.
, and
Sasaki
,
G.
,
2016
, “
Effect of the Interfacial Thermal Resistance on the Effective Thermal Conductivity of Aluminum Matrix Composites
,”
Mater. Trans.
,
57
(
5
), pp.
582
589
.
30.
Yuksel
,
A.
,
Yu
,
E. T.
,
Murthy
,
J.
, and
Cullinan
,
M.
,
2017
, “
Effect of Substrate and Nanoparticle Spacing on Plasmonic Enhancement in Three-Dimensional Nanoparticle Structures
,”
ASME J. Micro Nano-Manuf.
,
5
(
4
), p.
040903
.
31.
Yuksel
,
A.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2017
, “
Thermal Energy Transport Below the Diffraction Limit in Close-Packed Metal Nanoparticles
,”
ASME
Paper No. HT2017-4968
.
You do not currently have access to this content.