A wire clamp is used to grip a gold wire with in 1–2 ms during thermosonic wire bonding. Modern wire bonders require faster and larger opening wire clamps. In order to simplify the design process and find the key parameters affecting the opening of wire clamps, a model analysis based on energy conservation was developed. The relation between geometric parameters and the amplification ratio was obtained. A finite element (FE) model was also developed in order to calculate the amplification ratio and natural frequency. Experiments were carried out in order to confirm the results of these models. Model studies show that the arm length was the major factor affecting the opening of the wire clamp.
Issue Section:
Research Papers
References
1.
Harman
, G. G.
, 2010
, Wire Bonding In Microelectronics (Third Edition)
, McGraw-Hill
, New York
.2.
Wang
, F.
, and Chen
, Y.
, 2013
, “Experimental and Modeling Studies of Looping Process for Wire Bonding
,” ASME J. Electron. Packag.
, 135
(4
), p. 041009
.10.1115/1.40256673.
Wang
, F.
, Tang
, W.
, Li
, J.
, and Han
, L.
, 2013
, “Variable-Length Link-Spring Model for Kink Formation During Wire Bonding
,” ASME J. Electron. Packag.
, 135
(4
), p. 041004
.10.1115/1.40253084.
Xu
, W.
, and King
, T.
, 1996
, “Flexure Hinges for Piezoactuator Displacement Amplifiers: Flexibility, Accuracy, and Stress Considerations
,” Precis. Eng.
, 19
(1
), pp. 4
–10
.10.1016/0141-6359(95)00056-95.
Nah
, S. K.
, and Zhong
, Z. W.
, 2007
, “A Microgripper Using Piezoelectric Actuation for Micro-Object Manipulation
,” Sens. Actuators A
, 133
(1
), pp. 218
–224
.10.1016/j.sna.2006.03.0146.
Mohd Zubir
, M. N.
, and Shirinzadeh
, B.
, 2009
, “Development of a High Precision Flexure-Based Microgripper
,” Precis. Eng.
, 33
(4
), pp. 362
–370
.10.1016/j.precisioneng.2008.10.0037.
Solano
, B.
, and Wood
, D.
, 2007
, “Design and Testing of a Polymeric Microgripper for Cell Manipulation
,” Microelectron. Eng.
, 84
(5–4
), pp. 1219
–1222
.10.1016/j.mee.2007.01.1538.
Wierzbicki
, R.
, Houston
, K.
, Heerlein
, H.
, Barth
, W.
, Debski
, T.
, Eisinberg
, A.
, Menciassi
, A.
, Carrozza
, M. C.
, and Dario
, P.
, 2006
, “Design and Fabrication of an Electrostatically Driven Microgripper for Blood Vessel Manipulation
,” Microelectron. Eng.
, 83
(4–9
), pp. 1651
–1654
.10.1016/j.mee.2006.01.1109.
Giouroudi
, I.
, Hötzendorfer
, H.
, Kosel
, J.
, Andrijasevic
, D.
, and Brenner
, W.
, 2008
, “Development of a Microgripping System for Handling of Microcomponents
,” Precis. Eng.
, 32
(2
), pp. 148
–152
.10.1016/j.precisioneng.2007.07.00210.
Kohl
, M.
, Krevet
, B.
, and Just
, E.
, 2002
, “SMA Microgripper System
,” Sens. Actuators A
, 97–98
(5), pp. 646
–652
.10.1016/S0924-4247(01)00803-211.
Volland
, B. E.
, Heerlein
, H.
, and Rangelow
, I. W.
, 2002
, “Electrostatically Driven Microgripper
,” Microelectron. Eng.
, 61–62
(7), pp. 1015
–1023
.10.1016/S0167-9317(02)00461-612.
Li
, J.
, Han
, L.
, Duan
, J.
, and Zhong
, J.
, 2007
, “Interface Mechanism of Ultrasonic Flip Chip Bonding
,” Appl. Phys. Lett.
, 90
(24), p. 242902
.10.1063/1.274767313.
Junhui
, L.
, Linggang
, L.
, Luhua
, D.
, Bangke
, M.
, Fuliang
, W.
, and Lei
, H.
, 2011
, “Interfacial Microstructures and Thermodynamics of Thermosonic Cu-Wire Bonding
,” IEEE Electron Device Lett.
, 32
(12
), pp. 1433
–1435
.10.1109/LED.2011.216819014.
Dowell
, R. K.
, and Johnson
, T. P.
, 2011
, “Shear and Bending Flexibility in Closed-Form Moment Solutions for Continuous Beams and Bridge Structures
,” Eng. Struct.
, 33
(12
), pp. 3238
–3245
.10.1016/j.engstruct.2011.08.01615.
Li
, J.
, Liu
, L.
, Ma
, B.
, Deng
, L.
, and Han
, L.
, 2011
, “Dynamics Features of Cu-Wire Bonding During Overhang Bonding Process
,” IEEE Electron Device Lett.
, 32
(11), pp. 1731
–1733
.10.1109/LED.2011.216819016.
Li
, J.-h.
, Han
, L.
, Duan
, J.-a.
, and Zhong
, J.
, 2007
, “Microstructural Characteristics of Au/Al Bonded Interfaces
,” Mater. Charact.
, 58
(2
), pp. 103
–107
.10.1016/j.matchar.2006.03.01817.
Ma
, H.-W.
, Yao
, S.-M.
, Wang
, L.-Q.
, and Zhong
, Z.
, 2006
, “Analysis of the Displacement Amplification Ratio of Bridge-Type Flexure Hinge
,” Sens. Actuators A
, 132
(2
), pp. 730
–736
.10.1016/j.sna.2005.12.02818.
Pai
, P. F.
, and Palazotto
, A. N.
, 1996
, “Large-Deformation Analysis of Flexible Beams
,” Int. J. Solids Struct.
, 33
(9
), pp. 1335
–1353
.10.1016/0020-7683(95)00090-919.
Gummadi
, L. N. B.
, and Palazotto
, A. N.
, 1998
, “Large Strain Analysis of Beams and Arches Undergoing Large Rotations
,” Int. J. Non-Linear Mech.
, 33
(4
), pp. 615
–645
.10.1016/S0020-7462(97)00033-420.
Lobontiu
, N.
, Paine
, J. S. N.
, O'Malley
, E.
, and Samuelson
, M.
, 2002
,” Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion Precision and Stress Characterization Based on Compliance Closed-Form Equations
,” Precis. Eng.
, 26
(9), pp. 183
–192
.10.1016/S0141-6359(01)00108-821.
Pei
, X.
, Yu
, J.
, Zong
, G.
, and Bi
, S.
, 2010
, “An Effective Pseudo-Rigid-Body Method for Beam-Based Compliant Mechanisms
,” Precis. Eng.
, 34
(4
), pp. 634
–639
.10.1016/j.precisioneng.2009.10.00122.
Teo
, T. J.
, Chen
, I. M.
, Yang
, G.
, and Lin
, W.
, 2010
, “A Generic Approximation Model for Analyzing Large Nonlinear Deflection of Beam-Based Flexure Joints
,” Precis. Eng.
, 34
(3
), pp. 607
–618
.10.1016/j.precisioneng.2010.03.003Copyright © 2015 by ASME
You do not currently have access to this content.