A wire clamp is used to grip a gold wire with in 1–2 ms during thermosonic wire bonding. Modern wire bonders require faster and larger opening wire clamps. In order to simplify the design process and find the key parameters affecting the opening of wire clamps, a model analysis based on energy conservation was developed. The relation between geometric parameters and the amplification ratio was obtained. A finite element (FE) model was also developed in order to calculate the amplification ratio and natural frequency. Experiments were carried out in order to confirm the results of these models. Model studies show that the arm length was the major factor affecting the opening of the wire clamp.

References

1.
Harman
,
G. G.
,
2010
,
Wire Bonding In Microelectronics (Third Edition)
,
McGraw-Hill
,
New York
.
2.
Wang
,
F.
, and
Chen
,
Y.
,
2013
, “
Experimental and Modeling Studies of Looping Process for Wire Bonding
,”
ASME J. Electron. Packag.
,
135
(
4
), p.
041009
.10.1115/1.4025667
3.
Wang
,
F.
,
Tang
,
W.
,
Li
,
J.
, and
Han
,
L.
,
2013
, “
Variable-Length Link-Spring Model for Kink Formation During Wire Bonding
,”
ASME J. Electron. Packag.
,
135
(
4
), p.
041004
.10.1115/1.4025308
4.
Xu
,
W.
, and
King
,
T.
,
1996
, “
Flexure Hinges for Piezoactuator Displacement Amplifiers: Flexibility, Accuracy, and Stress Considerations
,”
Precis. Eng.
,
19
(
1
), pp.
4
10
.10.1016/0141-6359(95)00056-9
5.
Nah
,
S. K.
, and
Zhong
,
Z. W.
,
2007
, “
A Microgripper Using Piezoelectric Actuation for Micro-Object Manipulation
,”
Sens. Actuators A
,
133
(
1
), pp.
218
224
.10.1016/j.sna.2006.03.014
6.
Mohd Zubir
,
M. N.
, and
Shirinzadeh
,
B.
,
2009
, “
Development of a High Precision Flexure-Based Microgripper
,”
Precis. Eng.
,
33
(
4
), pp.
362
370
.10.1016/j.precisioneng.2008.10.003
7.
Solano
,
B.
, and
Wood
,
D.
,
2007
, “
Design and Testing of a Polymeric Microgripper for Cell Manipulation
,”
Microelectron. Eng.
,
84
(
5–4
), pp.
1219
1222
.10.1016/j.mee.2007.01.153
8.
Wierzbicki
,
R.
,
Houston
,
K.
,
Heerlein
,
H.
,
Barth
,
W.
,
Debski
,
T.
,
Eisinberg
,
A.
,
Menciassi
,
A.
,
Carrozza
,
M. C.
, and
Dario
,
P.
,
2006
, “
Design and Fabrication of an Electrostatically Driven Microgripper for Blood Vessel Manipulation
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
1651
1654
.10.1016/j.mee.2006.01.110
9.
Giouroudi
,
I.
,
Hötzendorfer
,
H.
,
Kosel
,
J.
,
Andrijasevic
,
D.
, and
Brenner
,
W.
,
2008
, “
Development of a Microgripping System for Handling of Microcomponents
,”
Precis. Eng.
,
32
(
2
), pp.
148
152
.10.1016/j.precisioneng.2007.07.002
10.
Kohl
,
M.
,
Krevet
,
B.
, and
Just
,
E.
,
2002
, “
SMA Microgripper System
,”
Sens. Actuators A
,
97–98
(5), pp.
646
652
.10.1016/S0924-4247(01)00803-2
11.
Volland
,
B. E.
,
Heerlein
,
H.
, and
Rangelow
,
I. W.
,
2002
, “
Electrostatically Driven Microgripper
,”
Microelectron. Eng.
,
61–62
(7), pp.
1015
1023
.10.1016/S0167-9317(02)00461-6
12.
Li
,
J.
,
Han
,
L.
,
Duan
,
J.
, and
Zhong
,
J.
,
2007
, “
Interface Mechanism of Ultrasonic Flip Chip Bonding
,”
Appl. Phys. Lett.
,
90
(24), p.
242902
.10.1063/1.2747673
13.
Junhui
,
L.
,
Linggang
,
L.
,
Luhua
,
D.
,
Bangke
,
M.
,
Fuliang
,
W.
, and
Lei
,
H.
,
2011
, “
Interfacial Microstructures and Thermodynamics of Thermosonic Cu-Wire Bonding
,”
IEEE Electron Device Lett.
,
32
(
12
), pp.
1433
1435
.10.1109/LED.2011.2168190
14.
Dowell
,
R. K.
, and
Johnson
,
T. P.
,
2011
, “
Shear and Bending Flexibility in Closed-Form Moment Solutions for Continuous Beams and Bridge Structures
,”
Eng. Struct.
,
33
(
12
), pp.
3238
3245
.10.1016/j.engstruct.2011.08.016
15.
Li
,
J.
,
Liu
,
L.
,
Ma
,
B.
,
Deng
,
L.
, and
Han
,
L.
,
2011
, “
Dynamics Features of Cu-Wire Bonding During Overhang Bonding Process
,”
IEEE Electron Device Lett.
,
32
(11), pp.
1731
1733
.10.1109/LED.2011.2168190
16.
Li
,
J.-h.
,
Han
,
L.
,
Duan
,
J.-a.
, and
Zhong
,
J.
,
2007
, “
Microstructural Characteristics of Au/Al Bonded Interfaces
,”
Mater. Charact.
,
58
(
2
), pp.
103
107
.10.1016/j.matchar.2006.03.018
17.
Ma
,
H.-W.
,
Yao
,
S.-M.
,
Wang
,
L.-Q.
, and
Zhong
,
Z.
,
2006
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Flexure Hinge
,”
Sens. Actuators A
,
132
(
2
), pp.
730
736
.10.1016/j.sna.2005.12.028
18.
Pai
,
P. F.
, and
Palazotto
,
A. N.
,
1996
, “
Large-Deformation Analysis of Flexible Beams
,”
Int. J. Solids Struct.
,
33
(
9
), pp.
1335
1353
.10.1016/0020-7683(95)00090-9
19.
Gummadi
,
L. N. B.
, and
Palazotto
,
A. N.
,
1998
, “
Large Strain Analysis of Beams and Arches Undergoing Large Rotations
,”
Int. J. Non-Linear Mech.
,
33
(
4
), pp.
615
645
.10.1016/S0020-7462(97)00033-4
20.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
O'Malley
,
E.
, and
Samuelson
,
M.
,
2002
,”
Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion Precision and Stress Characterization Based on Compliance Closed-Form Equations
,”
Precis. Eng.
,
26
(9), pp.
183
192
.10.1016/S0141-6359(01)00108-8
21.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
, and
Bi
,
S.
,
2010
, “
An Effective Pseudo-Rigid-Body Method for Beam-Based Compliant Mechanisms
,”
Precis. Eng.
,
34
(
4
), pp.
634
639
.10.1016/j.precisioneng.2009.10.001
22.
Teo
,
T. J.
,
Chen
,
I. M.
,
Yang
,
G.
, and
Lin
,
W.
,
2010
, “
A Generic Approximation Model for Analyzing Large Nonlinear Deflection of Beam-Based Flexure Joints
,”
Precis. Eng.
,
34
(
3
), pp.
607
618
.10.1016/j.precisioneng.2010.03.003
You do not currently have access to this content.