Abstract

Numerical simulations of time-dependent energy transport in semiconductor thin films are performed using the lattice Boltzmann method applied to phonon transport. The discrete lattice Boltzmann method is derived from the continuous Boltzmann transport equation assuming first gray dispersion and then nonlinear, frequency-dependent phonon dispersion for acoustic and optical phonons. Results indicate that a transition from diffusive to ballistic energy transport is found as the characteristic length of the system becomes comparable to the phonon mean free path. The methodology is used in representative microelectronics applications covering both crystalline and amorphous materials including silicon thin films and nanoporous silica dielectrics. Size-dependent thermal conductivity values are also computed based on steady-state temperature distributions obtained from the numerical models. For each case, reducing feature size into the subcontinuum regime decreases the thermal conductivity when compared to bulk values. Overall, simulations that consider phonon dispersion yield results more consistent with experimental correlations.

1.
Tien
,
C. L.
,
Majumdar
,
A.
, and
Gerner
,
F. M.
, 1998,
Microscale Heat Conduction
,
Taylor & Francis
,
London
.
2.
Cahill
,
D.
,
Ford
,
W.
,
Goodson
,
K. E.
,
Mahan
,
G.
,
Majumdar
,
A.
,
Maris
,
H.
,
Merlin
,
R.
, and
Phillpot
,
S.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
(
2
), pp.
793
818
.
3.
Narumanchi
,
S. V.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2005, “
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on—Insulator Transistors
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
713
723
.
4.
Narumanchi
,
S. V.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2006, “
Boltzmann Transport Equation-based Thermal Modeling Approaches for Hotspots in Microelectronics
,”
Heat Mass Transfer
0947-7411,
42
(
6
), pp.
478
491
.
5.
ITRS
, 2003, International Technology Roadmap for Semiconductors, ITRS 2003 Update, http://public.itrs.net/http://public.itrs.net/
6.
Flik
,
M. I.
,
Choi
,
B. I.
, and
Goodson
,
K. E.
, 1992, “
Heat Transfer Regimes in Microstructures
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
666
674
.
7.
Kaviani
,
M.
, and
McGaughey
,
A. J. H.
, 2003, “
Integration of Molecular Dynamics Simulations and Boltzmann Transport Equation in Phonon Thermal Conductivity Analysis
,”
Proceedings of IMECE’03: 2003 ASME International Mechanical Engineering Conference and R&D Expo.
,
Washington, DC
,
ASME
,
New York
, ASME Paper No. IMECE2003–41899.
8.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 2001, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
130
137
.
9.
Cahill
,
D. G.
, and
Pohl
,
R. O.
, 1987, “
Thermal Conductivity of Solids Above the Plateau
,”
Phys. Rev. B
0163-1829,
35
(
8
), pp.
4067
4073
.
10.
Majumdar
,
A.
, 1993, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
7
16
.
11.
Joshi
,
A. A.
, and
Majumdar
,
A.
, 1993, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
0021-8979,
74
(
1
), pp.
31
39
.
12.
Narumanchi
,
S. V.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2003, “
Simulation of Unsteady Small Heat Source Effects in Sub-micron Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
896
903
.
13.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 2003, “
Ballistic-Diffusive Approximation for Phonon Transport Accounting for Polarization and Dispersion
,”
Proceedings of the 2003 ASME Summer Heat Transfer Conference
,
Las Vegas
,
ASME
,
New York
, ASME Paper No. HT2003-47491.
14.
Narumanchi
,
S. V.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2004, “
Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
946
955
.
15.
Zhang
,
W.
, and
Fisher
,
T. S.
, 2002, “
Application of the Lattice Boltzmann Method to Sub-Continuum Heat Conduction
,”
Proceedings of IMECE’02: 2002 ASME International Mechanical Engineering Conference and R&D Expo
,
New Orleans
,
ASME
,
New York
, ASME Paper No. IMECE2002-32122.
16.
Succi
,
S.
, 2001,
The Lattice-Boltzmann Equation for Fluid Dynamics and Beyond
,
Clarendon Press
,
Oxford
.
17.
Ghai
,
S. S.
,
Escobar
,
R. A.
,
Amon
,
C. H.
, and
Jhon
,
M. S.
, 2003, “
Sub-Continuum Heat Conduction in Electronics Using the Lattice Boltzmann Method
,”
Proceedings of IPACK03: International Electronic Packaging Technical Conference and Expo
,
Maui
, HI, USA, InterPack Paper No. 2003-35258.
18.
Escobar
,
R. A.
,
Ghai
,
S. S.
,
Jhon
,
M. S.
, and
Amon
,
C. H.
, 2003, “
Time-Dependent Simulations of Sub-Continuum Heat Generation Effects in Electronic Devices Using the Lattice Boltzmann Method
,”
Proceedings of IMECE’03: 2003 ASME International Mechanical Engineering Conference and R&D Expo.
,
Washington, DC
,
ASME
,
New York
, ASME Paper No. IMECE2003-41522.
19.
Escobar
,
R. A.
,
Ghai
,
S. S.
,
Jhon
,
M. S.
, and
Amon
,
C. H.
, 2005, “
Multi-Length and Time Scale Thermal Transport Using the Lattice Boltzmann Method With Application to Electronics Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
97
107
20.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics
,
Harcourt
,
Fort Worth
.
21.
Escobar
,
R. A.
, and
Amon
,
C. H.
, 2004, “
Lattice-Boltzmann Modeling of Sub-Continuum Energy Transport in Silicon-On-Insulator Microelectronics Including Phonon Dispersion Effects
,”
Proceedings of ITHERM2004: 9th IEEE∕ASME Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Las Vegas
, NV, USA.
22.
Smith
,
B. R.
, and
Amon
,
C.
, 2003, “
Effect of Sub-Continuum Energy Transport on Effective Thermal Conductivity in Nanoporous Silica (Aerogel)
,”
Proceedings of IMECE’03: 2003 ASME International Mechanical Engineering Conference and R&D Expo.
,
Washington, DC
,
ASME
,
New York
, ASME Paper No. IMECE2003-42289.
23.
Dolling
,
G.
, 1963, “
Inelastic Scattering of Neutrons in Solids and Fluids
,”
Proceedings of the Chalk River Conference
,
Chalk River, Ontario
, Canada, pp.
37
41
.
24.
Han
,
Y.
, and
Klemens
,
P.
, 1993, “
Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures
,”
Phys. Rev. B
0163-1829,
48
(
9
), pp.
6033
6042
.
25.
Cahill
,
D. G.
, and
Pohl
,
R. O.
, 1988, “
Lattice Vibrations and Heat Transport in Crystals and Glasses
,”
Annu. Rev. Phys. Chem.
0066-426X,
39
, pp.
93
121
.
26.
Smith
,
D. M.
,
Ackerman
,
W. C.
, and
Stoltz
,
R. A.
, 1998, “
Polyol-Based Method for Forming Thin Film Aerogels on Semiconductor Substrates
,” U.S. Patent No. 5,807,60.
27.
Hunt
,
A. J.
, et al.
, 2000, “
Physical Properties of Silica Aerogels
,” Microstructured Materials Group Website, A. J. Hunt, Dir., Lawrence Berkeley National Laboratory, http://eande.lbl.gov/ECS/aerogelshttp://eande.lbl.gov/ECS/aerogels.
28.
Smith
,
B. R.
, and
Amon
,
C.
, 2003, “
Design of a Low-Cost Infrared Sensor Array Through Thermal System Modeling
,”
Proceedings of IPACK03: International Electronic Packaging Technical Conference and Expo
,
Maui
, HI, USA, InterPack Paper No. 2003-35277.
29.
Smith
,
B.
,
Agonafer
,
D.
, and
Amon
,
C.
, 2005, “
Aerogel in Microsystems Thermal Insulation
,”
Proceedings of 2005 ASME Summer Heat Transfer Conference
,
San Francisco
,
ASME
,
New York
, ASME Paper No. HT2005-72663.
30.
Kistler
,
S. S.
, 1942, “
The Calculation of the Surface Area of Microporous Solids From Measurements of Heat Conductivity
,”
J. Phys. Chem.
0022-3654,
46
, pp.
19
31
.
31.
Fricke
,
J.
,
Lu
,
X.
,
Wang
,
P.
,
Buttner
,
D.
, and
Heinemann
,
U.
, 1992, “
Optimization of Monolithic Silica Aerogel Insulants
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
9
), pp.
2305
2309
.
32.
Zeng
,
S. Q.
,
Hunt
,
A.
, and
Greif
,
R.
, 1995, “
Theoretical Modeling of Carbon Content to Minimize Heat Transfer in Silica Aerogel
,”
J. Non-Cryst. Solids
0022-3093,
186
, pp.
271
277
.
33.
Caps
,
R.
, and
Fricke
,
J.
, 1984, “
Infrared Radiative Heat Transfer in Highly Transparent Silica Aerogel
,”
Sol. Energy
0038-092X,
36
(
4
), pp.
361
364
.
34.
Chung
,
J. D.
, and
Kaviany
,
M.
, 2000, “
Effects of Phonon Pore Scattering and Pore Randomness on Effective Conductivity of Porous Silicon
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
521
538
.
35.
Jiaung
,
W.
, and
Ho
,
J.
, 2004, “
Lattice Boltzmann Study on Size Effect With Geometrical Bending on Phonon Heat Conduction in a Nanoduct
,”
J. Appl. Phys.
0021-8979,
95
(
3
), pp.
958
966
.
36.
Smith
,
B.
,
Beutler
,
P.
, and
Amon
,
C.
, 2005, “
Thermal Transport Network Model for High-Porosity Materials: Application to Nanoporous Aerogels
,” HT2005-72662,
Proceedings of 2005 ASME Summer Heat Transfer Conference
,
San Francisco, CA, USA
.
37.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
, 1972, “
Thermal Conductivity of the Elements
,”
J. Phys. Chem. Ref. Data
0047-2689,
1
, pp.
279
421
.
38.
Scheuerpflug
,
P.
,
Hauck
,
M.
, and
Fricke
,
J.
, 1992, “
Thermal Properties of Silica Aerogels Between 1.4 and 330K
,”
J. Non-Cryst. Solids
0022-3093,
145
, pp.
196
201
.
39.
Fricke
,
J.
, 1986,
Aerogels—A Fascinating Class of High-Performance Porous Solids
,
J.
Fricke
, ed.,
Springer-Verlag
,
Berlin
,
Aerogels
, Vol.
6
, pp.
2
19
.
You do not currently have access to this content.