Recent research results show that homogeneity and microstructure are very important parameters for the development of low cost materials with better performance for fuel cell applications. This research effort has been contributed in the development of low temperature solid oxide fuel cell (LTSOFC) material and technology as well as applications for polygeneration. The microstructure and electrochemical analyses were conducted. We found a series of new electrode materials which can run solid oxide fuel cell at 300600°C range with high performances, e.g., a high power density output of 980mWcm2 was obtained at 570°C. The fuel cell electrodes were prepared from metal oxide materials through a solid state reaction and then mixed with doped ceria. The obtained results have many advantages for the development of LTSOFCs for polygeneration. The nanostructure of the anode has been studied by high-resolution electron microscopy, the crystal structure and lattice parameters have also been studied by X-ray diffraction. The electrical conductivity of the composite anode was studied by electrochemical impedance spectra.

1.
Steele
,
B. C. H.
, and
Angelika
,
H.
, 2001, “
Materials for Fuel-Cell Technologies
,”
Nature (London)
0028-0836,
414
, pp.
345
352
.
2.
Hu
,
Y. -S.
,
Guo
,
Y. -G.
,
Dominko
,
R.
,
Gaberscek
,
M.
,
Jamnik
,
J.
, and
Maier
,
J.
, 2007, “
Improved Electrode Performance of Porous LiFePO4 Using RuO2 as an Oxidic Nanoscale Interconnect
,”
Adv. Mater.
0935-9648,
19
, pp.
1963
1966
.
3.
Williams
,
M. C.
,
Utz
,
B. R.
, and
Moore
,
K. M.
, 2004, “
DOE FE Distributed Generation Program
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
1
, pp.
18
20
.
4.
Wenxia
,
Z.
,
Zhe
,
L.
,
Shuyan
,
L.
,
Bo
,
W.
,
Jipeng
,
M.
,
Xiqiang
,
H.
,
Kongfa
,
C.
,
Na
,
A.
, and
Wenhui
,
S.
, 2008, “
Study on Ba0.5Sr0.5Co0.8Fe0.2O3−δ–Sm0.5Sr0.5CoO3−δ Composite Cathode Materials for IT-SOFCs
,”
J. Alloys Compd.
0925-8388,
465
, pp.
274
279
.
5.
Shao
,
Z.
, and
Haile
,
S. M.
, 2004, “
A High Performance Cathode for the Next Generation Solid-Oxide Fuel Cells
,”
Nature (London)
0028-0836,
431
, pp.
170
173
.
6.
Xia
,
C.
, and
Liu
,
M.
, 2002, “
Microstructures, Conductivities and Electrochemical Properties of Ce0.9Gd0.1O2 and GDC-Ni Anodes for Low-Temperature Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
152–153
, pp.
423
430
.
7.
Zha
,
S.
,
Rauch
,
W. L.
, and
Liu
,
M.
, 2004, “
Ni-GDC Anode for GDC Electrolyte-Based Low-Temperature SOFCs
,”
Solid State Ionics
0167-2738,
166
, pp.
241
250
.
8.
Braun
R. J.
, 2010 “
Techno-Economic Optimal Design of Solid Oxide Fuel Cell Systems for Micro-Combined Heat and Power Applications in the U.S.
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
7
(
3
), p.
031018
.
9.
Cocco
,
D.
, and
Tola
,
V.
, 2008, “
SOFC-MGT Hybrid Power Plants Fuelled by Methanol and DME
,”
J. Appl. Electrochem.
0021-891X,
38
, pp.
955
963
.
10.
Li
,
S.
, and
Zhu
,
B.
, 2008, “
Electrochemical Performances of Nanocomposite Solid Oxide Fuel Cells Using Nano-Size Material LaNi0.2Fe0.65Cu0.15O3 as Cathode
,”
J. Nanosci. Nanotechnol.
1533-4880,
8
, pp.
1
4
.
11.
Raza
,
R.
,
Ma
,
Y.
,
Wang
,
X.
,
Liu
,
X.
, and
Zhu
,
B.
, 2010, “
Study on Nanocomposites Based on Carbonate @ Ceria
,”
J. Nanosci. Nanotechnol.
1533-4880,
10
(
2
), pp.
1203
1207
.
12.
Raza
,
R.
,
Wang
,
X.
,
Ma
,
Y.
,
Liu
,
X.
, and
Zhu
,
B.
, 2010, “
Improved Ceria–Carbonate Composite Electrolytes
,”
Int. J. Hydrogen Energy
0360-3199,
35
(
7
), pp.
2684
2688
.
13.
Sawalha
,
A.
,
Abu-Abdeen
,
M.
, and
Sedky
,
A.
, 2009, “
Electrical Conductivity Study in Pure and Doped ZnO Ceramic System
,”
Physica B
0921-4526,
404
, pp.
1316
1320
.
14.
Omar
,
K.
,
Johan
,
M. D. O.
, and
Hassin
,
M. M.
, 2009, “
Investigation on Dielectric Constant of Zinc Oxide
,”
Modern Applied Science
1913-1844,
3
, pp.
110
116
.
15.
Herle
,
V. J.
,
Ihringer
,
R.
,
Cavieres
,
V.
,
Constantin
,
L.
, and
Bucheli
,
O.
, 2001, “
Anode Supported Solid Oxide Fuel Cells With Screen-Printed Cathodes
,”
J. Eur. Ceram. Soc.
0955-2219,
21
(
10–11
), pp.
1855
1859
.
16.
Gorte
,
R. J.
, and
John
,
V. M.
, 2005, “
Porous Electrode, Solid Oxide Fuel Cell and Method of Producing the Same
,” U.S. Patent No. 6,958,196.
17.
Zhu
,
B.
, 2009, “
Solid Oxide Fuel Cell (SOFC) Technical Challenges and Solutions From Nano-Aspects
,”
Int. J. Energy Res.
0363-907X,
33
(
13
), pp.
1126
1137
.
18.
Raze
,
R.
,
Wang
,
X. D.
,
Ma
,
Y.
,
Huang
,
Y. Z.
, and
Zhu
,
B.
, 2009, “
Enhancement of Conductivity in Ceria-Carbonate Nanocomposites for LTSOFCs
,”
J. Nano Research
,
6
, pp.
197
203
.
19.
Zhu
,
B.
, 2001, “
Proton and Oxygen Ion-Mixed Conducting Ceramic Composites and Fuel Cells
,”
Solid State Ionics
0167-2738,
145
, pp.
371
380
.
20.
Suzuki
,
T.
,
Hasan
,
Z.
,
Funahashi
,
Y.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2009, “
Impact of Anode Microstructure on Solid Oxide Fuel Cells
,”
Science
0036-8075,
325
, pp.
852
855
.
21.
Yokokawa
,
H.
,
Tu
,
H.
,
Iwanschitz
,
B.
, and
Mai
,
A.
, 2008, “
Fundamental Mechanisms Limiting Solid Oxide Fuel Cell Durability
,”
J. Power Sources
0378-7753,
182
, pp.
400
412
.
22.
Yoshida
,
H.
,
Deguchi
,
H.
,
Kawano
,
M.
,
Hashino
,
K.
,
Inagaki
,
T.
,
Ijichi
,
H.
,
Horiuchi
,
M.
,
Kawahara
,
K.
, and
Suda
,
S.
, 2007, “
Study on Pyrolysing Behavior of NiO–SDC Composite Particles Prepared by Spray Pyrolysis Technique
,”
Solid State Ionics
0167-2738,
178
, pp.
399
405
.
23.
Plivelich
,
R. F.
,
McLarnon
,
F. R.
, and
Cairns
,
E. J.
, 1995, “
Degradation Mechanisms of Nickel Oxide Electrodes in Zinc/Nickel Oxide Cells With Low-Zinc-Solubility Electrolytes
,”
J. Appl. Electrochem.
0021-891X,
25
, pp.
433
440
.
You do not currently have access to this content.