The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC’s performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell’s microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

1.
Hussain
,
M. M.
,
Li
,
X.
, and
Dincer
,
I.
, 2006, “
Mathematical Modeling of Planar Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
161
, pp.
1012
1022
.
2.
Greene
,
E. S.
,
Chiu
,
W. K. S.
, and
Medeiros
,
M. G.
, 2006, “
Mass Transfer In Graded Microstructure Solid Oxide Fuel Cell Electrodes
,”
J. Power Sources
0378-7753,
161
, pp.
225
231
.
3.
Joshi
,
A. S.
,
Grew
,
K. N.
,
Izzo
,
J. R.
, Jr.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
, 2010, “
Lattice Boltzmann Modeling of Three-Dimensional, Multi-Component Mass Diffusion in a Solid Oxide Fuel Cell Anode
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
7
, p.
011006
.
4.
Joshi
,
A. S.
,
Grew
,
K. N.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
, 2007, “
Lattice Boltzmann Modeling of 2D Gas Transport in a Solid Oxide Fuel Cell Anode
,”
J. Power Sources
0378-7753,
164
(
2
), pp.
631
638
.
5.
Izzo
,
J. R.
, Jr.
,
Joshi
,
A. S.
,
Grew
,
K. N.
,
Chiu
,
W. K. S.
,
Tkachuk
,
A.
,
Wang
,
S. H.
, and
Yun
,
W.
, 2008, “
Structural Characterization of Solid Oxide Fuel Cell Anodes Using X-Ray Computed Tomography at Sub-50 nm Resolution
,”
J. Electrochem. Soc.
0013-4651,
155
(
5
), pp.
B504
B508
.
6.
Grew
,
K. N.
,
Chu
,
Y. S.
,
Yi
,
J.
,
Peracchio
,
A. A.
,
Izzo
,
J. R
, Jr.
,
De Carlo
,
F.
,
Hwu
,
Y.
, and
Chiu
,
W. K. S.
, 2010, “
Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode
,”
J. Electrochem. Soc.
0013-4651,
157
, pp.
B783
B792
.
7.
Singhal
,
S. C.
, and
Kendall
,
K.
, 2003,
High Temperature Solid Oxide Fuel Cells Fundamentals, Design and Applications
,
Elsevier
,
New York
.
8.
Marinšek
,
M.
,
Pejovnik
,
S.
, and
Macek
,
J.
, 2007, “
Modeling of Electrical Properties of Ni-YSZ Composites
,”
J. Eur. Ceram. Soc.
0955-2219,
27
, pp.
959
964
.
9.
Reifsnider
,
K.
,
Huang
,
X.
,
Ju
,
G.
, and
Solasi
,
R.
, 2006, “
Multi-Scale Modeling Approaches for Functional Nano-Composite Materials
,”
J. Mater. Sci.
0022-2461,
41
, pp.
6751
6759
.
10.
Jiang
,
Y.
, and
Virkar
,
A. V.
, 2003, “
Fuel Composition and Dilutent Effect on Gas Transport and Performance of Anode-Supported SOFCs
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A942
A951
.
11.
Nam
,
J. H.
, and
Jeon
,
D. H.
, 2006, “
A Comprehensive Micro-Scale Model for Transport and Reaction in Intermediate Temperature Solid Oxide Fuel Cells
,”
Electrochim. Acta
0013-4686,
51
, pp.
3446
3460
.
12.
Jiang
,
Y.
, and
Virkar
,
A. V.
, 2001, “
La1−xSrxCoO3−δ (LSC)-Ce0.8Sm0.2O2−λ (SCD) Composite Cathodes for Anode Supported, YSZ-SDC Bi-Layer Electrolyte, Thin Film, Solid Oxide Fuel Cells
,”
Electrochemical Society Proceedings on Ionic and Mixed Conducting Ceramics IV
,
T. A.
Ramanarayanan
, ed.,
The Electrochemical Society, Inc.
,
Pennington, NJ
, Vol.
2001-28
, pp.
374
383
.
13.
Bucher
,
E.
,
Sitte
,
W.
,
Rom
,
I.
,
Papst
,
I.
,
Grogger
,
W.
, and
Hofer
,
F.
, 2002, “
Microstructure and Ionic Conductivity of Strontium-Substituted Lanthanum Cobaltites
,”
Solid State Ionics
0167-2738,
152–153
, pp.
417
421
.
14.
Koep
,
E.
,
Jin
,
C.
,
Haluska
,
M.
,
Das
,
R.
,
Narayan
,
R.
,
Sandhage
,
K.
,
Snyder
,
R.
, and
Liu
,
M.
, 2006, “
Microstructure and Electrochemical Properties of Cathode Materials for SOFCs Prepared via Pulsed Laser Deposition
,”
J. Power Sources
0378-7753,
161
, pp.
250
255
.
15.
Kosacki
,
I.
,
Rouleau
,
C. M.
,
Becher
,
P. F.
,
Bentley
,
J.
, and
Lowndes
,
D. H.
, 2005, “
Nanoscale Effects on the Ionic Conductivity of Highly Textured YSZ Thin Films
,”
Solid State Ionics
0167-2738,
176
, pp.
1319
1326
.
16.
Chan
,
S. H.
, and
Xia
,
Z. T.
, 2001, “
Anode Micro Model of Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
148
(
4
), pp.
A388
A394
.
17.
Bessler
,
W. G.
,
Warnatz
,
J.
, and
Goodwin
,
D. G.
, 2007, “
The Influence of Equilibrium Potential on the Hydrogen Oxidation Kinetics of SOFC Anodes
,”
Solid State Ionics
0167-2738,
177
, pp.
3371
3383
.
18.
Brown
,
M.
,
Primdahl
,
S.
, and
Mogensen
,
M.
, 2000, “
Structure/Performance Relations for Ni/Yttria-Stabilized Zirconia Anodes for Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
(
2
), pp.
475
485
.
19.
Cannarozzo
,
M.
,
Grosso
,
S.
,
Agnew
,
G.
,
Borghi
,
A. D.
, and
Costamagna
,
P.
, 2007, “
Effects of Mass Transport on the Performance of Solid Oxide Fuel Cells Composite Electrodes
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
4
, pp.
99
106
.
20.
Costamagna
,
P.
,
Slimovic
,
A.
,
Borghi
,
M. D.
, and
Agnew
,
G.
, 2004, “
Electrochemical Model of the Integrated Planar Solid Oxide Fuel Cell (IP-SOFC)
,”
Chem. Eng. J.
0300-9467,
102
, pp.
61
69
.
21.
2007, Private Communication With Prof. Nigel Sammes, University of Connecticut, Mar. 20.
22.
Brown
,
M. S.
, 1998, “
Fabrication and Characterization of Nickel/Yttria Stabilized Zirconia Cermet Anodes for Solid Oxide Fuel Cells
,” Ph.D. thesis, University of Waikato, New Zealand.
23.
Livingston
,
J. D.
, 1999,
Electronic Properties of Engineering Materials
,
Wiley
,
New York
.
24.
Maier
,
J.
, 1995, “
Ionic Conduction in Space Charge Regions
,”
Prog. Solid State Chem.
0079-6786,
23
, pp.
171
263
.
25.
COMSOL
, 2006, COMSOL Multiphysics User’s Guide, Burlington, MA.
26.
Brandon
,
D.
, and
Kaplan
,
W. D.
, 1999,
Microstructural Characterization of Materials
,
Wiley
,
New York, NY
.
27.
Brundle
,
C. R.
,
Evans
,
C. A.
, Jr.
,
Wilson
,
S.
, and
Fitzpatrick
,
L. E.
, 1992,
Encyclopedia of Materials Characterization: Surfaces, Interfaces, Thin Films
,
Manning
,
Greenwich, CT
.
28.
Reniers
,
F.
, and
Tewell
,
C.
, 2005, “
New Improvements in Energy and Spatial (x,y,z) Resolution in AES and XPS Applications
,”
J. Electron Spectrosc. Relat. Phenom.
0368-2048,
142
, pp.
1
25
.
29.
Smith
,
C. S.
, and
Guttman
,
L.
, 1953, “
Measurement of Internal Boundaries in Three-Dimensional Structures by Random Sectioning
,”
J. Met.
0148-6608,
197
, pp.
81
87
.
30.
Gurland
,
J.
, 1966, “
An Estimation of Contact and Continuity of Dispersions in Opaque Samples
,”
Trans. Metall. Soc. AIME
0543-5722,
236
, pp.
642
646
.
31.
Gurland
,
J.
, 1958, “
The Measurement of Grain Contiguity in Two-Phase Alloys
,”
Trans. Metall. Soc. AIME
0543-5722,
212
, pp.
452
455
.
32.
Lee
,
J. -H.
,
Moon
,
H.
,
Lee
,
H. -W.
,
Kim
,
J.
,
Kim
,
J. -D.
, and
Yoon
,
K. -H.
, 2002, “
Quantitative Analysis of Microstructure and Its Related Electrical Property of SOFC Anode, Ni-YSZ Cermet
,”
Solid State Ionics
0167-2738,
148
, pp.
15
26
.
33.
Zhao
,
F.
, and
Virkar
,
A. V.
, 2005, “
Dependence of Polarizations in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters
,”
J. Power Sources
0378-7753,
141
(
1
), pp.
79
95
.
You do not currently have access to this content.