A two-dimensional, steady state, nonisothermal, nonequilibrium, multifluid, two-phase flow model is employed to investigate fuel delivery characteristics, as well as the strong relation between water transport through the membrane and methanol crossover. A porous layer, called the fuel delivery layer, is used between the anode backing layer and the methanol reservoir to be able to employ high concentration methanol solution at the anode reservoir. A simple analytical model for liquid methanol distribution in the anode is presented to show the significant effect of water crossover through the membrane on the methanol dilution at the anode catalyst layer. A comprehensive numerical model is employed to verify the concept developed by the analytical model. The numerical model also accounts for the dissolved water phase in the Nafion membrane. Using a hydrophobic microporous layer at the cathode decreases methanol crossover due to a reduction in water crossover, as well as attaining a water neutral condition. It is found that thickening of the porous fuel delivery layer cannot alleviate the methanol crossover through the membrane without controlling the water transport. The results also show that a cathode microporous layer can significantly reduce the liquid saturation at the cathode backing layer which, in turn, reduces water flooding at the cathode.

1.
Narayanan
,
S. R.
,
Valdez
,
T. I.
, and
Rohatgi
,
N.
, 2003,
Handbook of Fuel Cells: Fundamentals, Technology and Application
, Vol.
3
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
,
Chichester
, p.
894
.
2.
Aricò
,
H. A.
,
Srinivasan
,
S.
, and
Antonucci
,
V.
, 2001, “
DMFCs: From Fundamental Aspects to Technology Development
,”
Fuel Cells
0532-7822,
1
, pp.
133
161
.
3.
Schultz
,
T.
,
Zhou
,
S.
, and
Sundmacher
,
K.
, 2001, “
Current Status of and Recent Developments in the Direct Methanol Fuel Cell
,”
Chem. Eng. Technol.
0930-7516,
24
(
12
), pp.
1223
1233
.
4.
Liu
,
J. G.
,
Zhao
,
T. S.
,
Chen
,
R.
, and
Wong
,
C. W.
, 2005, “
The Effect of Methanol Concentration on the Performance of a Passive DMFC
,”
Electrochem. Commun.
1388-2481,
7
, pp.
288
294
.
5.
Liu
,
J. G.
,
Zhao
,
T. S.
,
Liang
,
Z. X.
, and
Chen
,
R.
, 2006, “
Effect of Membrane Thickness on the Performance and Efficiency of Passive Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
153
, pp.
61
67
.
6.
Peled
,
E.
,
Blum
,
A.
,
Aharon
,
A.
,
Phiosoph
,
M.
, and
Yavi
,
Y.
, 2003, “
Novel Approach to Recycling Water and Reducing Water Loss in DMFCs
,”
Electrochem. Solid-State Lett.
1099-0062,
6
(
12
), pp.
A268
A271
.
7.
Blum
,
A.
,
Duvdevani
,
T.
,
Phiosoph
,
M.
,
Rudoy
,
N.
, and
Peled
,
E.
, 2003, “
Water-Neutral Micro Direct-Methanol Fuel Cell (DMFC) for Portable Applications
,”
J. Power Sources
0378-7753,
117
, pp.
22
25
.
8.
Lu
,
G. Q.
,
Liu
,
F. Q.
, and
Wang
,
C. Y.
, 2005, “
Water Transport Through Nafion 112 Membrane in DMFC
,”
Electrochem. Solid-State Lett.
1099-0062,
8
(
1
), pp.
A1
A4
.
9.
Jewett
,
G.
,
Guo
,
Z.
, and
Faghri
,
A.
, 2007, “
Water and Air Management Systems for a Passive Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
168
, pp.
434
446
.
10.
Song
,
K. Y.
,
Lee
,
H. K.
, and
Kim
,
H. T.
, 2007, “
MEA Design for Low Water Crossover in Air Breathing DMFC
,”
Electrochim. Acta
0013-4686,
53
, pp.
637
643
.
11.
Xu
,
C.
,
Zhao
,
T. S.
, and
He
,
Y. L.
, 2007, “
Effect of Cathode Gas Diffusion Layer on Water Transport and Cell Performance in Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
171
, pp.
268
274
.
12.
Xu
,
C.
, and
Zhao
,
T. S.
, 2007, “
In Situ Measurement of Water Crossover Through the Membrane for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
168
, pp.
143
153
.
13.
Liu
,
F.
,
Lu
,
G.
, and
Wang
,
C. Y.
, 2006, “
Low Crossover of Methanol and Water Through Thin Membrane in Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
(
3
), pp.
A543
A553
.
14.
Liu
,
F.
, and
Wang
,
C. Y.
, 2008, “
Water and Methanol Crossover in Direct Methanol Fuel Cells-Effect of Anode Diffusion Media
,”
Electrochim. Acta
0013-4686,
53
, pp.
5517
5522
.
15.
Wu
,
Q. X.
,
Zhao
,
T. S.
,
Chen
,
R.
, and
Yang
,
W. W.
, 2009, “
Effect of Anode Micro-Porous Layers Made of Carbon Powder and Nano-Tubes on Water Transport in Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
191
, pp.
304
311
.
16.
Guo
,
Z.
, and
Faghri
,
A.
, 2006, “
Miniature DMFCs With Passive Thermal-Fluids Management System
,”
J. Power Sources
0378-7753,
160
, pp.
1142
1155
.
17.
Abdelkareem
,
M. A.
, and
Nakagawa
,
N.
, 2006, “
DMFC Employing a Porous Plate for an Efficient Operation at High Methanol Concentrations
,”
J. Power Sources
0378-7753,
162
, pp.
114
123
.
18.
Um
,
S.
, and
Wang
,
C. Y.
, 2006, “
Computational Study of Water Transport in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
156
, pp.
211
223
.
19.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
20.
Meng
,
H.
, and
Wang
,
C. Y.
, 2004, “
Electron Transport in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A358
A367
.
21.
Lin
,
G.
,
He
,
W.
, and
Nguyen
,
T. V.
, 2004, “
Modeling Liquid Water Effects in the Gas Diffusion and Catalyst Layers of the Cathode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A1999
A2006
.
22.
Meng
,
H.
, and
Wang
,
C. Y.
, 2004, “
Large-Scale Simulation of Polymer Electrolyte Fuel Cells by Parallel Computing
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
3331
3343
.
23.
Lin
,
G.
, and
Nguyen
,
T. V.
, 2006, “
A Two-Dimensional Two-Phase Model of a PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A372
A382
.
24.
Meng
,
H.
, 2006, “
A Three-dimensional PEM Fuel Cell Model With Consistent Treatment of Water Transport in MEA
,”
J. Power Sources
0378-7753,
162
, pp.
426
435
.
25.
Meng
,
H.
, 2007, “
A Two-Phase Non-Isothermal Mixed-Domain PEM Fuel Cell Model and Its Application to Two-dimensional Simulations
,”
J. Power Sources
0378-7753,
168
, pp.
218
228
.
26.
Wu
,
H.
,
Berg
,
P.
, and
Li
,
X. G.
, 2007, “
Non-Isothermal Transient Modeling of Water Transport in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
165
, pp.
232
243
.
27.
Karnik
,
A. Y.
,
Stefanopoulou
,
A. G.
, and
Sun
,
J.
, 2007, “
Water Equilibria and Management Using a Two-Volume Model of a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
164
, pp.
590
605
.
28.
Vorobev
,
A.
,
Zikanov
,
O.
, and
Shamim
,
T.
, 2007, “
A Computational Model of a PEM Fuel Cell With Finite Vapor Absorption Rate
,”
J. Power Sources
0378-7753,
166
, pp.
92
103
.
29.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
Spakovsky
,
M. R. V.
, 2003, “
Single Domain PEMFC Model Based on Agglomerate Catalyst Geometry
,”
J. Power Sources
0378-7753,
115
, pp.
81
89
.
30.
Shah
,
A. A.
,
Kim
,
G. S.
,
Gervais
,
W.
,
Young
,
A.
,
Promislow
,
K.
,
Li
,
J.
, and
Ye
,
S.
, 2006, “
The Effects of Water and Microstructure on the Performance of Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
160
, pp.
1251
1268
.
31.
Shah
,
A. A.
,
Kim
,
G. S.
,
Sui
,
P. C.
, and
Harvey
,
D.
, 2007, “
Transient Non-Isothermal Model of a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
163
, pp.
793
806
.
32.
Weber
,
A. Z.
, and
Newman
,
J.
, 2003, “
Transport in Polymer-Electrolyte Membranes I. Physical Model
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1008
A1015
.
33.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Transport in Polymer-Electrolyte Membranes II. Mathematical Model
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A311
A325
.
34.
Nazarov
,
I.
, and
Promislow
,
K.
, 2007, “
The Impact of Membrane Constraint on PEM Fuel Cell Water Management
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B623
B630
.
35.
Kulikovsky
,
A. A.
, 2000, “
Two-Dimensional Numerical Modeling of a Direct Methanol Fuel Cell
,”
J. Appl. Electrochem.
0021-891X,
30
, pp.
1005
1014
.
36.
Divisek
,
J.
,
Fuhrmann
,
J.
,
Gartner
,
K.
, and
Jung
,
R.
, 2003, “
Performance Modeling of a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
(
6
), pp.
A811
A825
.
37.
Wang
,
Z. H.
, and
Wang
,
C. Y.
, 2003, “
Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
150
(
4
), pp.
A508
A519
.
38.
Birgersson
,
E.
,
Nordlund
,
J.
,
Vynnycky
,
M.
, and
Picard
,
C.
, 2004, “
Reduced Two-Phase Model for Analysis of the Anode of a DMFC
,”
J. Electrochem. Soc.
0013-4651,
151
(
12
), pp.
A2157
A2172
.
39.
Rice
,
J.
, and
Faghri
,
A.
, 2006, “
A Transient, Multi-Phase and Multi-Component Model of a New Passive DMFC
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4804
4820
.
40.
Saarinen
,
V.
,
Himanen
,
O.
,
Kallio
,
T.
,
Sundholm
,
G.
, and
Kontturi
,
K.
, 2007, “
A 3D Model for the Free-Breathing Direct Methanol Fuel Cell: Methanol Crossover Aspects and Validations With Current Distribution Measurements
,”
J. Power Sources
0378-7753,
172
, pp.
805
815
.
41.
Yang
,
W. W.
, and
Zhao
,
T. S.
, 2007, “
Two-Phase, Mass-Transport Model for Direct Methanol Fuel Cells With Effect of Non-Equilibrium Evaporation and Condensation
,”
J. Power Sources
0378-7753,
174
, pp.
136
147
.
42.
Yang
,
W. W.
,
Zhao
,
T. S.
, and
Xu
,
C.
, 2007, “
Three-Dimensional Two-Phase Mass Transport Model for Direct Methanol Fuel Cells
,”
Electrochim. Acta
0013-4686,
53
, pp.
853
862
.
43.
Yang
,
W. W.
, and
Zhao
,
T. S.
, 2007, “
A Two-Dimensional, Two-Phase Mass Transport Model for Liquid-Feed DMFCs
,”
Electrochim. Acta
0013-4686,
52
, pp.
6125
6140
.
44.
Yan
,
T. Z.
, and
Jen
,
T. Ch.
, 2008, “
Two-Phase Flow Modeling of Liquid-Feed Direct Methanol Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
1192
1204
.
45.
Chen
,
R.
,
Zhao
,
T. S.
,
Yang
,
W. W.
, and
Xu
,
C.
, 2008, “
Two-Dimensional Two-Phase Thermal Model for Passive Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
175
, pp.
276
287
.
46.
Xiao
,
B.
, and
Faghri
,
A.
, 2008, “
Transient Modeling and Analysis of a Passive Liquid-Feed DMFC
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3127
3143
.
47.
Rice
,
J.
, and
Faghri
,
A.
, 2008, “
Analysis of a Passive Vapor Feed Direct Methanol Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
948
959
.
48.
Rice
,
J.
, and
Faghri
,
A.
, 2008, “
Thermal and Start-Up Characteristics of a Miniature Passive Liquid Feed DMFC System, Including Continuous/Discontinuous Phase Limitations
,”
ASME J. Heat Transfer
0022-1481,
130
(
6
), p.
062001
.
49.
Yang
,
W. W.
, and
Zhao
,
T. S.
, 2008, “
A Transient Two-Phase Mass Transport Model for Liquid Feed Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
185
, pp.
1131
1140
.
50.
Liu
,
W.
, and
Wang
,
C. Y.
, 2007, “
Modeling Water Transport in Liquid Feed Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
164
, pp.
189
195
.
51.
Liu
,
W.
, and
Wang
,
C. Y.
, 2007, “
Three-Dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
(
3
), pp.
B352
B361
.
52.
Xu
,
C.
,
Zhao
,
T. S.
, and
Yang
,
W. W.
, 2008, “
Modeling of Water Transport Through the Membrane Electrode Assembly for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
178
, pp.
291
308
.
53.
Faghri
,
A.
, and
Zhang
,
Y.
, 2006,
Transport Phenomena in Multiphase Systems
,
Elsevier
,
New York
.
54.
Udell
,
K. S.
, 1985, “
Heat Transfer in Porous Media Considering Phase Change and Capillarity—The Heat Pipe Effect
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
2
), pp.
485
495
.
55.
Bahrami
,
H.
, and
Faghri
,
A.
, 2010, “
Transport Phenomena in a Semi-Passive Direct Methanol Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
2563
2578
.
56.
Xiao
,
B.
,
Bahrami
,
H.
, and
Faghri
,
A.
, 2010, “
Analysis of Heat and Mass Transport in a Miniature Passive and Semi Passive Liquid-Feed Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
195
, pp.
2248
2259
.
57.
Hinatsu
,
J. T.
,
Mizuhata
,
M.
, and
Takenaka
,
H.
, 1994, “
Water Uptake of Perflurosulfonic Acid Membranes From Liquid Water and Water Vapor
,”
J. Electrochem. Soc.
0013-4651,
141
(
6
), pp.
1493
1498
.
58.
Patankar
,
S. V.
, 1980,
Numerical Heat and Fluid Flow
,
Hemisphere
,
Washington, DC
.
59.
Scott
,
K.
,
Taama
,
W.
, and
Cruickshank
,
J.
, 1997, “
Performance and Modeling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
65
, pp.
159
171
.
60.
Ye
,
Q.
, and
Nguyen
,
T. V.
, 2007, “
Three-Dimensional Simulation of Liquid Water Distribution in a PEMFC with Experimentally Measured Capillary Function
,”
J. Electrochem. Soc.
0013-4651,
154
(
12
), pp.
B1242
B1251
.
61.
Yaws
,
C. L.
, 1992,
Thermodynamic and Physical Property Data
,
Gulf
,
Houston, TX
.
62.
Woolf
,
L. A.
, 1985, “
Insights Into Solute-Solute-Solvent Interactions From Transport Property Measurements With Particular Reference to Methanol-Water Mixtures and Their Constituents
,”
Pure Appl. Chem.
0033-4545,
57
(
8
), pp.
1083
1090
.
You do not currently have access to this content.