Abstract

In this study, the effects of electrode microstructure and electrolyte parameters on intermediate temperature solid oxide fuel cell (ITSOFC) performance were investigated using a one-dimensional solid oxide fuel cell model from the Pacific Northwest National Laboratory (PNNL). The activation overpotential was investigated through the exchange current density term, which is dependent on the cathode activation energy, the cathode porosity, and the pore size and grain size at the cathode triple phase boundary. The cathode pore size, grain size, and porosity were not integrated in the PNNL model, therefore, an analytical solution for exchange current density from Deng and Petric (2005, “Geometric Modeling of the Triple-Phase Boundary in Solid Oxide Fuel Cells,” J. Power Sources, 140, pp. 297–303) was utilized to optimize their effects on performance. Through parametric evaluation and optimization of the electrode microstructure parameters, the activation overpotential was decreased by 29% and the overall ITSOFC maximum power density was increased by almost 400% from the benchmark PNNL case. The effects and importance of electrode microstructure parameters on ITSOFC performance were defined. Optimization of such parameters will be the key in creating viable ITSOFC systems. Although this was deemed successful for this project, future research should be focused on numerically quantifying and modeling the electrode microstructure in two- and three-dimensions for more accurate results, as the electrode microstructure may be highly multidimensional in nature.

1.
Thomas
,
S.
, and
Zalbowitz
,
M.
, 2002,
Fuel Cells: Green Power
,
Los Alamos National Laboratory
, U.S. Department of Energy,
Los Alamos, NM
.
2.
Gellings
,
P.
, and
Boumeester
,
H.
, 1997,
The CRC Handbook of Solid State Electrochemistry
,
CRC
,
Boca Raton, FL
.
3.
Huang
,
B.
,
Ye
,
X.
,
Wang
,
S.
,
Nie
,
H.
,
Liu
,
R.
, and
Wen
,
T.
, 2007, “
Performance of Ni/ScSZ Cermet Anode Modified by Coating With Gd0.2Ce0.8O2 for a SOFC
,”
Mater. Res. Bull.
0025-5408,
42
, pp.
1705
1714
.
4.
Baron
,
S.
, 2004, “
Intermediate Temperature (500–850°C) Solid Oxide Fuel Cells (IT-SOFCs) Explained
,” http://www.fuelcelltoday.com
5.
Wincewicz
,
K.
, and
Cooper
,
J.
, 2005, “
Taxonomies of SOFC Material and Manufacturing Alternatives
,”
J. Power Sources
0378-7753,
140
, pp.
280
296
.
6.
Chick
,
L.
,
Williford
,
R.
,
Stevenson
,
J.
, and
Windisch
,
C.
, 2002, “
Experimentally Calibrated, Spreadsheet-Based SOFC Unit-Cell Performance Model
,”
Proceedings of the ASME Conference, Fuel Cell Seminar
, San Diego, CA.
7.
Chung
,
B.
,
Pham
,
A.
,
Haslam
,
J.
, and
Glass
,
R.
, 2002, “
Influence of Electrode Configuration on the Performance of Electrode-Supported Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
149
(
3
), pp.
A325
A330
.
8.
Kim
,
J.
,
Virkar
,
A.
,
Fung
,
K.
,
Mehta
,
K.
, and
Singhal
,
S.
, 1999, “
Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
146
(
1
), pp.
69
78
.
9.
Virkar
,
A.
,
Chen
,
J.
,
Tanner
,
C.
, and
Kim
,
J.
, 2000, “
The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
131
, pp.
189
198
.
10.
Deng
,
X.
, and
Petric
,
A.
, 2005, “
Geometric Modeling of the Triple-Phase Boundary in Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
140
, pp.
297
303
.
11.
Huang
,
W.
,
Huang
,
X.
, and
Reifsnider
,
K.
, 2006, “
Meso-Scale Multiphysics Model of SOFC Cathode Processes
,”
Proceedings of the COMSOL Users Conference
, Boston, MA.
12.
Jiang
,
S.
, and
Wang
,
W.
, 2005, “
Novel Structured Mixed Ionic and Electronic Conducting Cathodes of Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
176
, pp.
1351
1357
.
13.
Ni
,
M.
,
Leung
,
M.
, and
Leung
,
D.
, 2007, “
Parametric Study of Solid Oxide Fuel Cell Performance
,”
Energy Convers. Manage.
0196-8904,
48
, pp.
1525
1535
.
14.
Chan
,
S.
, and
Xia
,
Z.
, 2002, “
Polarization Effects in Electrolyte/Electrode Supported Solid Oxide Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
32
, pp.
339
347
.
15.
Deseure
,
J.
,
Bultel
,
Y.
,
Dessemond
,
L.
, and
Siebert
,
E.
, 2005, “
Theoretical Optimisation of a SOFC Composite Cathode
,”
Electrochim. Acta
0013-4686,
50
, pp.
2037
2046
.
16.
Touati
,
A.
, and
Hammou
,
A.
, 2006, “
Determination of the Exchange Current in the SOFC Composite Cathode
,”
Solid State Ionics
0167-2738,
12
, pp.
339
341
.
17.
Fleig
,
J.
, 2003, “
Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance
,”
Annu. Rev. Mater. Res.
1531-7331,
33
, pp.
361
82
.
18.
Faghri
,
A.
, and
Guo
,
Z.
, 2005, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3891
3920
.
19.
Jiang
,
Y.
, and
Virkar
,
A.
, 2003, “
Fuel Composition and Dilutent Effect on Gas Transport and Performance of Anode-Supported SOFCs
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A942
A951
.
20.
O’Hayre
,
R.
,
Cha
,
S.
,
Colella
,
W.
, and
Prinz
,
F.
, 2006,
Fuel Cell Fundamentals
,
Wiley
,
New York
.
21.
Williford
,
R.
,
Chick
,
L.
,
Maupin
,
G.
,
Simner
,
S.
, and
Stevenson
,
S.
, 2003, “
Diffusion Limitations in the Porous Anodes of Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
150
(
8
), pp.
A1067
A1072
.
22.
Tanner
,
C.
,
Fung
,
K.
, and
Virkar
,
A.
, 1997, “
The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance
,”
J. Electrochem. Soc.
0013-4651,
144
(
1
), pp.
21
30
.
23.
Kakaç
,
S.
,
Anchasa
,
P.
, and
Zhou
,
X.
, 2007, “
A Review of Numerical Modeling of Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
7
), pp.
761
786
.
24.
Walters
,
K. M.
,
Dean
,
A. M.
,
Zhu
,
H. Y.
, and
Kee
,
R. J.
, 2003, “
Homogeneous Kinetics and Equilibrium Predictions of Coking Propensity in the Anode Channels of Direct Oxidation Solid-Oxide Fuel Cells Using Dry Natural Gas
,”
J. Power Sources
0378-7753,
123
, pp.
182
189
.
25.
Van Herle
,
J.
,
Marechal
,
F.
,
Leuenberger
,
S.
, and
Favrat
,
D.
, 2003, “
Energy Balance Model of a SOFC Cogenerator Operated With Biogas
,”
J. Power Sources
0378-7753,
118
, pp.
375
383
.
26.
Jurado
,
F.
, 2004, “
Modeling SOFC Plants on the Distribution System Using Identification Algorithms
,”
J. Power Sources
0378-7753,
129
, pp.
205
215
.
27.
Zhao
,
H.
,
Huo
,
L.
, and
Gao
,
S.
, 2004, “
Electrochemical Properties of LSM-CBO Composite Cathode
,”
J. Power Sources
0378-7753,
125
, pp.
149
154
.
28.
Srivastava
,
N.
, 2006, “
Modeling of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems
,” MS thesis, Florida State University, FL.
29.
Vignes
,
A.
, 1966, “
Diffusion in Binary Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
5
, pp.
189
199
You do not currently have access to this content.