Microtubular solid oxide fuel cells (SOFCs) are shown to be robust under rapid temperature changes and have large electrode area per volume (high volumetric power density). Such features are believed to increase a variety of application. Our study aims to establish a fabrication technique for microtubular SOFC bundles with the volumetric power density of 2Wcm3 at 0.7 V. So far, we have succeeded to develop a fabrication technology for microtubular SOFC bundles using anode supported tubular SOFCs and cathode matrices with well-controlled microstructures. A key to improve the performance of the microtubular SOFC bundles is to optimize the microstructure of the cathode matrices because it influences a pressure loss for air and electric current collection. In this paper, a simulation study of an air flow, temperature, and potential distributions in the microtubular SOFC bundle was conducted in order to understand the characteristics of the present bundle design. In addition, operating conditions of the microtubular SOFC bundles was discussed for realizing the target power density of 2Wcm3.

1.
Mizutani
,
Y.
,
Hisada
,
K.
,
Ukai
,
K.
,
Sumi
,
H.
,
Yokoyama
,
M.
,
Nakamura
,
Y.
, and
Yamamoto
,
O.
, 2006, “
From Rare Earth Doped Zirconia to 1kW Solid Oxide Fuel Cell System
,”
J. Alloys Compd.
0925-8388,
408–412
, pp.
518
524
.
2.
Steele
,
B. C. H.
, 2000, “
Appraisal of Ce1−yGdyO2−y/2 Electrolytes for IT-SOFC Operation at 500°C
,”
Solid State Ionics
0167-2738,
129
, pp.
95
110
.
3.
Otake
,
T.
,
Yagami
,
H.
,
Yashiro
,
K.
,
Nigara
,
Y.
,
Kawada
,
T.
, and
Mizusaki
,
J.
, 2003, “
Nonstoichiometry of Ce1−xYxO2−0.5x−δ (X=0.1,0.2)
,”
Solid State Ionics
0167-2738,
161
, pp.
181
186
.
4.
Hatchwell
,
C.
,
Sammes
,
N. M.
, and
Brown
,
I. W. M.
, 1999, “
Fabrication and Properties of Ce0.8Gd0.2O1.9 Electrolyte-Based Tubular Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
126
, pp.
201
208
.
5.
Van herle
,
J.
,
Ihringer
,
R.
,
Sammes
,
N. M.
,
Tompsett
,
G.
,
Kendall
,
K.
,
Yamada
,
K.
,
Wen
,
C.
,
Kawada
,
T.
,
Ihara
,
M.
, and
Mizusaki
,
J.
, 2000, “
Concept and Technology of SOFC for Electric Vehicles
,”
Solid State Ionics
0167-2738,
132
, pp.
333
342
.
6.
Lockett
,
M.
,
Simmons
,
M. J. H.
, and
Kendall
,
K.
, 2004, “
CFD to Predict Temperature Profile for Scale Up of Micro-Tubular SOFC Stacks
,”
J. Power Sources
0378-7753,
131
, pp.
243
246
.
7.
Sammes
,
N. M.
,
Du
,
Y.
, and
Bove
,
R.
, 2005, “
Design and Fabrication of a 100W Anode Supported Micro-Tubular SOFC Stack
,”
J. Power Sources
0378-7753,
145
, pp.
428
434
.
8.
Kendall
,
K.
,
Dikwal
,
C. M.
, and
Bujalski
,
W.
, 2007, “
Comparative Analysis of Thermal and Redox Cycling for Microtubular SOFCs
,”
ECS Trans.
1938-5862,
7
(
1
), pp.
1521
1526
.
9.
Funahashi
,
Y.
,
Shimamori
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2007, “
Fabrication and Characterization of Components for Cube Shaped Micro Tubular SOFC Bundle
,”
J. Power Sources
0378-7753,
163
, pp.
731
736
.
10.
Y.
Funahashi
,
T.
Suzuki
,
Y.
Fujishiro
,
K.
Nagai
,
T.
Otake
,
T.
Shimamori
and
M.
Awano
, 2007, “
Fabrication and Characterization of the Cubic SOFC Bundles With Micro Tubular Cells
,”
Fuel Cell Seminar and Exposition Abstract
, pp.
223
226
.
11.
Funahashi
,
Y.
,
Shimamori
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2007, “
Microstructure Control of Cathode Matrices for the Cube-Type SOFC Bundles
,”
Ceram. Eng. Sci. Proc.
0196-6219,
28
(
4
), pp.
195
202
.
12.
Japan Society of Mechanical Engineers, 1989, Heat Transfer, Ver. 4, Japan Society of Mechanical Engineers Data Book, p.
329
.
You do not currently have access to this content.