The clamping pressure used in assembling a proton exchange membrane (PEM) fuel cell stack can have significant effects on the overall cell performance. The pressure causes stack deformation, particularly in the gas diffusion layer (GDL), and impacts gas mass transfer and electrical contact resistance. Existing research for analyzing the assembly pressure effects is mostly experimental. This paper develops a sequential approach to study the pressure effects by combining the mechanical and electrochemical phenomena in fuel cells. The model integrates gas mass transfer analysis based on the deformed GDL geometry and modified parameters with the microscale electrical contact resistance analysis. The modeling results reveal that higher assembly pressure increases cell resistance to gas mass transfer, causes an uneven current density distribution, and reduces electrical contact resistance. These combined effects show that as the assembly pressure increases, the PEM fuel cell power output increases first to a maximum and then decreases over a wide range of pressures. An optimum assembly pressure is observed. The model is validated against published experimental data with good agreements. This study provides a basis for determining the assembly pressure required for optimizing PEM fuel cell performance.

1.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
2.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
(
8
), pp.
1151
1162
.
3.
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
5
), pp.
1218
1225
.
4.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
8
), pp.
2178
2186
.
5.
Chi
,
P. H.
,
Weng
,
F. B.
,
Su
,
A.
, and
Chan
,
S. H.
, 2006, “
Numerical Modeling of Proton Exchange Membrane Fuel Cell With Considering Thermal and Relative Humidity Effects on the Cell Performance
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
292
302
.
6.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
106
(
1–2
), pp.
284
294
.
7.
Berning
,
T.
, and
Djilali
,
N.
, 2003, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell—A Parametric Study
,”
J. Power Sources
0378-7753,
124
(
2
), pp.
440
452
.
8.
Lai
,
Y. H.
,
Miler
,
D. P.
,
Ji
,
C.
, and
Trabold
,
T. A.
, 2004, “
Stack Compression of PEM Fuel Cells
,”
Proceedings of Fuel Cell 2004: The Second International Conference on Fuel Cell Science, Engineering and Technology
, Rochester, NY, Jun. 14–16.
9.
Lee
,
W. K.
,
Ho
,
C. H.
,
Van Zee
,
J. W.
, and
Murthy
,
M.
, 1999, “
The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
84
(
1
), pp.
45
51
.
10.
Lee
,
S. J.
,
Hsu
,
C. D.
, and
Huang
,
C. H.
, 2005, “
Analyses of the Fuel Cell Stack Assembly Pressure
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
353
361
.
11.
Chu
,
H. S.
,
Yeh
,
C.
, and
Chen
,
F.
, 2003, “
Effects of Porosity Change of Gas Diffuser on Performance of Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
123
(
1
), pp.
1
9
.
12.
Ge
,
J.
,
Higier
,
A.
, and
Liu
,
H.
, 2006, “
Effect of Gas Diffusion Layer Compression on PEM Fuel Cell Performance
,”
J. Power Sources
0378-7753,
159
(
2
), pp.
922
927
.
13.
Bazylak
,
A.
,
Sinton
,
D.
,
Liu
,
Z. S.
, and
Djilali
,
N.
, 2007, “
Effect of Compression on Liquid Water Transport and Microstructure of PEMFC Gas Diffusion Layers
,”
J. Power Sources
0378-7753,
163
, pp.
784
792
.
14.
Chang
,
W. R.
,
Hwang
,
J. J.
,
Weng
,
F. B.
, and
Chan
,
S. H.
, 2007, “
Effect of Clamping Pressure on the Performance of a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
166
, pp.
149
154
.
15.
Nitta
,
I.
,
Hottinen
,
T.
,
Himanen
,
O.
, and
Mikkola
,
M.
, 2007, “
Inhomogeneous Compression of PEMFC Gas Diffusion Layer
,”
J. Power Sources
0378-7753,
171
, pp.
26
36
.
16.
Zhou
,
P.
, and
Wu
,
C. W.
, 2007, “
Numerical Study on the Compression Effect of Gas Diffusion Layer on PEMFC Performance
,”
J. Power Sources
0378-7753,
170
, pp.
93
100
.
17.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1993, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
3513
3526
.
18.
Inoue
,
G.
,
Matsukuma
,
Y.
, and
Minemoto
,
M.
, 2006, “
Effect of Gas Channel Depth on Current Density Distribution of Polymer Electrolyte Fuel Cell by Numerical Analysis Including Gas Flow Through Gas Diffusion Layer
,”
J. Power Sources
0378-7753,
157
, pp.
136
152
.
19.
Mathias
,
M.
,
Roth
,
J.
,
Fleming
,
J.
, and
Lehnert
,
W.
, 2003,
Handbook of Fuel Cells—Fundamentals, Technology and Applications
, Vol.
3
,
W.
Vielstich
,
A.
Lamm
,
H. A.
Gasteiger
, eds.,
Wiley
,
New York
, pp.
13
.
20.
Cussler
,
E. L.
, 1984,
Diffusion-Mass Transfer in Fluid Systems
,
Cambridge University
,
Cambridge, UK
.
21.
Newman
,
J. S.
, 1991,
Electrochemical Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chap. 1.
22.
Parthasarathy
,
A.
,
Srinivasan
,
S.
, and
Appleby
,
A. J.
, 1992, “
Temperature Dependence of the Electrode Linetics of Oxygen Reduction at the Platinum/Nafion Interface—A Microelectrode Investigation
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2530
2537
.
23.
Zhou
,
Y.
,
Lin
,
G.
,
Shih
,
A. J.
, and
Hu
,
S. J.
, 2007, “
A Micro-Scale Model for Predicting Contact Resistance Between Bipolar Plate and Gas Diffusion Layer in PEM Fuel Cells
,”
J. Power Sources
,
163
(
2
), pp.
777
783
. 0378-7753
24.
Hoogers
,
G.
, 2003,
Fuel Cell Technology Handbook
,
CRC
,
Boca Raton, FL
, Chap. 4.
You do not currently have access to this content.