A typical segmented-in-series tubular solid oxide fuel cell (SOFC) consists of flattened ceramic support tubes with rows of electrochemical cells fabricated on their outer surfaces connected in series. It is desirable to design this type of SOFC to operate with a uniform electrolyte current density distribution to make the most efficient use of the available space and possibly to help minimize the onset of cell component degradation. Predicting the electrolyte current density distribution requires an understanding of the many physical and electrochemical processes occurring, and these are simulated using the newly developed SOHAB multiphysics computer code. Of particular interest is the interaction between the current flow within the cells and the consumption of fuel from an adjacent internal gas supply channel. Initial simulations showed that in the absence of fuel consumption, ionic current tends to concentrate near the leading edge of each electrolyte. Further simulations that included fuel consumption showed that the choice of fuel flow direction can have a strong effect on the current flow distribution. The electrolyte current density distribution is biased toward the upstream fuel flow direction because ionic current preferentially flows in regions rich in fuel. Thus the correct choice of fuel flow direction can lead to more uniform electrolyte current density distributions, and hence it is an important design consideration for tubular segmented-in-series SOFCs. Overall, it was found that the choice of fuel flow direction has a negligible effect on the output voltage of the fuel cells.

1.
Singhal
,
S. C.
, and
Kendall
,
K.
, eds., 2003,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
New York
.
2.
Gardner
,
F. J.
,
Day
,
M. J.
,
Brandon
,
N. P.
,
Pashley
,
M. N.
, and
Cassidy
,
M.
, 2000, “
SOFC Technology Development at Rolls-Royce
,”
J. Power Sources
0378-7753,
86
, pp.
122
129
.
3.
Singhal
,
S. C.
, 2000, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
0167-2738,
135
, pp.
305
313
.
4.
Nakamura
,
K.
,
Yamashita
,
S.
,
Tsutomu
,
S.
, and
Seyama
,
T.
, 2005, “
Development of SOFC Power Generation System Using Segmented-in-Series Cell Stacks Operating at Low Temperatures
,”
Proceedings of the First European Fuel Cell Technology and Applications Conference
, ASME,
41
.
5.
Pillai
,
M. R.
,
Gostovic
,
D.
,
Kim
,
H.
, and
Barnett
,
S. A.
, 2007, “
Short-Period Segmented-in-Series Solid Oxide Fuel Cells on Flattened Tube Supports
,”
J. Power Sources
0378-7753,
163
, pp.
960
965
.
6.
Koch
,
S.
,
Hendriksen
,
P. V.
,
Morgensen
,
M.
,
Liu
,
Y.-L.
,
Dekker
,
N.
,
Rietveld
,
B.
,
de Haart
,
B.
, and
Tietz
,
F.
, 2006, “
Solid Oxide Fuel Cell Performance Under Severe Operating Conditions
,”
Fuel Cells
1615-6846,
6
(
2
), pp.
130
136
.
7.
Costamagna
,
P.
,
Selimovic
,
A.
,
Del Borghi
,
M.
, and
Agnew
,
G.
, 2004, “
Electrochemical Model of the Integrated Planar Solid Oxide Fuel Cell (IP-SOFC)
,”
Chem. Eng. J.
0300-9467,
102
, pp.
61
69
.
8.
Bossel
,
U. G.
, 1992, “
Facts and Figures, Final Report on SOFC Data
,” International Energy Agency, Technical Report.
9.
Lai
,
T. S.
, and
Barnett
,
S. A.
, 2005, “
Design Considerations for Segmented-in-Series Fuel Cells
,”
J. Power Sources
0378-7753,
147
, pp.
85
94
.
10.
Haberman
,
B. A.
, and
Marquis
,
A. J.
, 2007, “
The Current Density Distribution in a Segmented-in-Series SOFC
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X, to be published.
11.
Ferguson
,
J. R.
,
Fiard
,
J. M.
, and
Herbin
,
R.
, 1996, “
Three-Dimensional Numerical Simulation for Various Geometries of Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
58
, pp.
109
122
.
12.
Iwata
,
H.
,
Hikosaka
,
T.
,
Morita
,
M.
,
Iwanari
,
T.
,
Ito
,
K.
,
Onda
,
K.
,
Esaki
,
Y.
,
Sakaki
,
Y.
, and
Nagata
,
S.
, 2000, “
Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions
,”
Solid State Ionics
0167-2738,
132
, pp.
297
308
.
13.
Yakabe
,
H.
and
Sakurai
,
T.
, 2004, “
3D Simulation on the Current Path in Planar SOFCs
,”
Solid State Ionics
0167-2738,
174
, pp.
295
302
.
14.
Manadin
,
P.
,
Bernay
,
C.
,
Tran-Dac
,
S.
,
Broto
,
A.
,
Abes
,
D.
, and
Casssir
,
M.
, 2006, “
SOFC Modelling and Numerical Simulation of Performances
,”
Fuel Cells
1615-6846,
6
, pp.
71
78
.
15.
Young
,
J. B.
and
Todd
,
B.
, 2005, “
Modelling of Multi-Component Gas Flows in Capillaries and Porous Solids
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5338
5353
.
16.
Haberman
,
B. A.
and
Young
,
J. B.
, 2008, “
A Detailed Three-Dimensional Simulation of the IP-SOFC Fuel Cell Stack
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
5
(
1
) p.
011006
.
17.
Denton
,
J. D.
, 1992, “
The Calculationof Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
18
26
.
18.
Haberman
,
B. A.
, “
Three-Dimensional Simulation of the Integrated-Planar Solid Oxide Fuel Cell
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
19.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2005, “
Numerical Investigation of the Air Flow Through a Bundle of IP-SOFC Modules
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5475
5487
.
20.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2004, “
Three-Dimensional Simulation of Chemically Reacting Gas Flows in the Porous Support Structure of an Integrated-Planar Solid Oxide Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3617
3629
.
21.
Haberman
,
B. A.
and
Young
,
J. B.
, 2006, “
Diffusion and Chemical Reaction in the Porous Structures of Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
312
321
.
You do not currently have access to this content.