Abstract

Solid oxide fuel cells (SOFC) are a promising technology for distributed electricity generation and cogeneration. Numerous papers have been published in the past several years proposing mathematical/computational fluid dynamics (CFD) models for predicting the transient and steady-state performance of such cells. In this paper, a detailed steady-state CFD model of a planar anode supported SOFC is proposed, which accounts for mass, thermal, and charge transport as well as electrochemistry and the chemistry of internal fuel reforming. Its main characteristics include the use of a continuous model for the electrochemistry, allowing one to examine different three-phase boundary geometries. This is an improvement over the typical model reported in literature, which utilizes an equivalent resistive circuit approach or a homogeneous distribution of three-phase boundaries. The model proposed here is used to simulate the degradation of anode, cathode, and electrolyte due to instabilities (e.g., anode oxidation due to fuel depletion) or to the delamination of the electrodes from the electrolyte. Such degradations result in a drop in cell performance but are difficult to predict without the use of models that can be helpful for diagnosis. The model is applied to experimental data available in literature both for the nondegraded and degraded cases.

References

1.
Singhal
,
S. C.
, 2000, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
0167-2738,
135
, pp.
305
313
.
2.
Blue Ridge Numerics Inc., 2004, CFDESIGN™, Charlottesville, VA.
3.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
von Spakovsky
,
M. R.
, 2004, “
A Two-Dimensional Computational Model of a PEMFC With Liquid Water Transport
,”
J. Power Sources
0378-7753,
128
(
2
), pp.
173
184
.
4.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
von Spakovsky
,
M. R.
, 2003, “
Single Domain PEMFC Model Based on Agglomerate Catalyst Geometry
,”
J. Power Sources
0378-7753,
115
(
1
), pp.
81
89
.
5.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
,
Springer
,
New York
.
6.
Suwanwarangkul
,
R.
,
Croiset
,
E.
,
Fowler
,
M. W.
,
Douglas
,
P. L.
,
Entchev
,
E.
, and
Douglas
,
M. A.
, 2003, “
Performance Comparison of Fick’s, Dusty-Gas and Stefan-Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode
,”
J. Power Sources
0378-7753,
122
, pp.
9
18
.
7.
Veldsink
,
J. W.
,
van Damme
,
R. M. J.
,
Versteeg
,
G. F.
, and
van Swaaij
,
W. P. M.
, 1995, “
The Use of the Dusty-Gas Model for the Description of Mass Transport With Chemical Reaction in Porous Media
,”
Chem. Eng. J.
0300-9467,
57
, pp.
115
125
.
Krishna
,
R.
, and
Wesselingh
,
J. A.
, 1997, “
The Maxwell-Stefan Approach to Mass Transfer
,”
Chem. Eng. Sci.
0009-2509,
52
(
6
), pp.
861
911
.
8.
Yakabe
,
H.
,
Hishinuma
,
M.
,
Uratani
,
M.
,
Matsuzaki
,
Y.
, and
Yasuda
,
I.
, 2000, “
Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
86
, pp.
423
431
.
9.
Fuller
,
E. N.
,
Schettler
,
P. D.
, and
Giddings
,
J. C.
, 1966, “
A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients
,”
Ind. Eng. Chem.
0019-7866,
58
(
5
) pp.
18
27
.
10.
Sun
,
Y. P.
, and
Scott
,
K.
, 2004, “
An Analysis of the Influence of Mass Transfer on Porous Electrode Performance
,”
Chem. Eng. J.
0300-9467,
102
, pp.
83
91
.
11.
Costamagna
,
P.
,
Costa
,
P.
, and
Antonucci
,
V.
, 1998, “
Micro-Modelling of Solid Oxide Fuel Cell Electrodes
,”
Electrochim. Acta
0013-4686,
43
(
3–4
), pp.
375
394
.
12.
Tanner
,
C. W.
,
Fung
,
K.
, and
Virkar
,
A. V.
, 1997, “
The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance
,”
J. Electrochem. Soc.
0013-4651,
144
(
1
), pp.
21
30
.
13.
Virkar
,
A. V.
,
Chen
,
J.
,
Tanner
,
C. W.
, and
Kim
,
J.
, 2000, “
The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
131
, pp.
189
198
.
14.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2004, “
Three-Dimensional Simulation of Chemically Reacting Gas Flows in the Porous Support Structure of an Integrated-Planar Solid Oxide Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3617
3629
.
15.
Satterfield
,
C. N.
, 1996,
Heterogeneous Catalysis in Industrial Practice
,
Krieger
,
Malabar, FL
.
16.
Achenbach
,
E.
, and
Riensche
,
E.
, 1994, “
Methane/Steam Reforming Kinetics for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
52
, pp.
283
288
.
17.
Campanari
,
S.
, and
Iora
,
P.
, 2004, “
Definition and Sensitivity Analysis of a Finite Volume SOFC Model for a Tubular Cell Geometry
,”
J. Power Sources
0378-7753,
132
, pp.
113
126
.
18.
Lin
,
Y.
, and
Beale
,
S.
, 2003, “
Performance Prediction in Solid Oxide Fuel Cells
,”
Third International Conference on CFD in the Minerals and Process Industry
, Dec. 10–12, CSIRO,
Melbourne, Australia
.
19.
Melhus
,
O.
, and
Ratkje
,
S. K.
, 1996, “
A Simultaneous Solution of All Transport Properties in a Solid Oxide Fuel Cell
,”
Denki Kagaku oyobi Kogyo Butsuri Kagaku
0366-9297,
64
(
6
), pp.
662
673
.
20.
Li
,
P.
, and
Chyu
,
M. K.
, 2003, “
Simulation of the Chemical/Electrochemical Reactions and Heat/Mass Transfer for a Tubular SOFC in a Stack
,”
J. Power Sources
0378-7753,
124
, pp.
487
498
.
21.
Hsiao
,
Y. C.
, and
Selman
,
J. R.
, 1997, “
The Degradation of SOFC Electrodes
,”
Solid State Ionics
0167-2738,
98
, pp.
33
38
.
22.
Weber
,
A.
,
Sauer
,
B.
,
Muller
,
A. C.
,
Herbstritt
,
D.
, and
Ivers-Tiffée
,
E.
, 2002, “
Oxidation of H2, CO and Methane in SOFCs With Ni/YSZ-Cermet Anodes
,”
Solid State Ionics
0167-2738,
152–153
, pp.
543
550
.
23.
Tu
,
H.
, and
Stimming
,
U.
, 2004, “
Advances, Aging Mechanisms and Lifetime in Solid-Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
127
, pp.
284
293
.
24.
Massardo
,
A. F.
, and
Lubelli
,
F.
, 2000, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT): Part A—Cell Model and Cycle Thermodynamic Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
27
35
.
You do not currently have access to this content.