The performance of fuel cells depends on the rate parameters of the kinetic reactions between the involved species, among other conditions. The determination of these parameters is crucial for the understanding of the functionality of fuel cells. Differential electrochemical mass spectroscopy in thin layer flow cells is used as a tool to gain improved understanding of the heterogeneous catalytic reactions taking place in fuel cell catalytic layers. In this paper, we focus on the description of thin layer cells by numerical models based on partial differential equations and the extraction of kinetics parameters by inverse modeling. For the model setup, various software tools are used. The simulation of laminar free flow is performed by the commercial code COMSOL. A finite volume code is used for the simulation of the reactive transport. The latter is coupled with a Levenberg–Marquardt algorithm for the determination of kinetic constants. Two designs of thin layer flow cells are considered: a cylindrical and a rectangular design. A drawback of the cylindrical cell design is the highly inhomogeneous velocity field leading to spatial variations of the conditions for electrode reactions. In contrast, the rectangular cell design shows a homogeneous flow field in the vicinity of the catalyst. The rectangular cell design has the additional advantage that flow is essentially two dimensional and can be computed analytically, which simplifies the numerical approach. The inverse modeling procedure is demonstrated for a hydrogen-carbon monoxide system.

1.
Jusys
,
Z.
,
Massong
,
H.
, and
Baltruschat
,
H.
, 1999, “
A New Approach for Simultaneous DEMS and EQCM: Electrooxidation of Adsorbed CO on Pt and Pt-Ru
,”
J. Electrochem. Soc.
0013-4651,
146
(
3
), pp.
1093
1098
.
2.
Holzbecher
,
E.
,
Halseid
,
R.
,
Jusys
,
Z.
,
Fuhrmann
,
J.
, and
Behm
,
J.
, 2006, “
Modellierung von Dünnschichtzellen - Thin Layer Flow Cell Modelling
,”
Proceedings of the COMSOL Anwenderkonferenz 2006
, FEMLAB GmbH, ed.,
Göttingen
, pp.
112
115
.
3.
Fuhrmann
,
J.
,
Koprucki
,
T.
, and
Langmach
,
H.
, 2001, “
pdelib: An Open Modular Tool Box for the Numerical Solution of Partial Differential Equations-Design Patterns
,”
Proceedings of the 14th GAMM Seminar Kiel on Concepts of Numerical Software
,
W.
Hackbusch
and
G.
Wittum
, eds.,
Kiel
.
4.
Jusys
,
Z.
,
Kaiser
,
J.
, and
Behm
,
R. J.
, 2001, “
Electrooxidation of CO and H2/CO on a Carbon Supported Pt Catalyst—A Kinetic and Mechanistic Study by Differential Electrochemical Mass Spectrometry
,”
Phys. Chem. Chem. Phys.
1463-9076,
3
, pp.
4650
4660
.
5.
Divisek
,
J.
,
Fuhrmann
,
J.
,
Gärtner
,
K.
, and
Jung
,
R.
, 2003, “
Performance Modeling of a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
(
6
), pp.
A811
A825
.
6.
Vidakovic
,
T.
,
Christov
,
M.
, and
Sundmacher
,
K.
, 2005, “
Rate Expression for Electrochemical Oxydation of Methanol on a Direct Methanol Fuel Cell Anode
,”
J. Electroanal. Chem.
0022-0728,
580
, pp.
105
121
.
7.
Bear
,
J.
, 1972,
Dynamics of Fluids in Porous Media
,
Elsevier
,
New York
.
8.
Peyret
,
R.
, and
Taylor
,
T. D.
, 1985,
Computational Methods in Fluid Flow
,
Springer
,
New York
.
9.
COMSOL MULTIPHYSICS, Version 3.2, 2006, COMSOL AB, Stockholm.
10.
Bear
,
J.
, and
Bachmat
,
Y.
, 1990,
Introduction to Modeling of Transport Phenomena in Porous Media
,
Kluwer
,
Dordrecht
.
11.
Fuhrmann
,
J.
, and
Langmach
,
H.
, 2001, “
Stability and Existence of Solutions of Time-Implicit Finite Volume Schemes for Viscous Nonlinear Conservation Laws
,”
Appl. Numer. Math.
0168-9274,
37
(
1–2
), pp.
201
230
.
12.
Baschuk
,
J.
, and
Li
,
X.
, 2003, “
Modelling CO Poisoning and O2 Bleeding in a PEM Fuel Cell Anode
,”
Int. J. Energy Res.
0363-907X,
27
(
12
), pp.
1095
1116
.
13.
Newman
,
J. S.
, and
Thomas-Alyea
,
K. E.
, 2004,
Electrochemical Systems
,
Wiley
,
New York
.
14.
Hamann
,
C.
, and
Vielstich
,
W.
, 1998,
Elektrochemie
,
Wiley-VCH
,
Weinheim
.
15.
Eymard
,
R.
,
Fuhrmann
,
J.
, and
Gärtner
,
K.
, 2006, “
A Finite Volume Scheme for Nonlinear Parabolic Equations Derived From One-Dimensional Local Dirichlet Problems
,”
Numer. Math.
0029-599X,
102
(
3
), pp.
463
495
.
16.
Allen
,
D. N.
, and
Southwell
,
R. V.
, 1955, “
Relaxation Methods Applied to Determine the Motion, in Two Dimensions, of a Viscous Fluid Past a Fixed Cylinder
,”
Q. J. Mech. Appl. Math.
0033-5614,
8
, pp.
129
145
.
17.
Bouillard
,
N.
, 2006, “
Développement de Méthodes Numériques pour le Transport Réactif
,” Ph.D. thesis, École Doctorale 184 en Mathématiques et Informatique de Marseille.
18.
Shewchuk
,
J. R.
, 1996, “
Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator
,”
Applied Computational Geometry: Towards Geometric Engineering
,
Lecture Notes in Computer Science
Vol.
1148
,
M. C.
Lin
and
D.
Manocha
, eds.,
Springer
,
New York
, pp.
203
222
.
19.
Si
,
H.
, and
Gärtner
,
K.
, 2005, “
Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations
,”
Proceedings of 14th International Meshing Roundtable
,
B. W.
Hanks
, ed.,
Springer
,
San Diego
, pp.
147
163
.
20.
Schenk
,
O.
, and
Gärtner
,
K.
, 2004, “
Solving Unsymmetric Sparse Systems of Linear Equations With PARDISO
,”
FGCS, Future Gener. Comput. Syst.
0167-739X,
20
(
3
), pp.
475
487
.
21.
Fuhrmann
,
J.
, 2002, “
Multiphysics Systems Solution by Time-Implicit Voronoi Box Finite Volumes
,”
Proceedings of the Third Symposium on Finite Volumes in Complex Applications
,
Porquerolles
,
Hermes, Paris
, pp.
551
559
.
22.
Burman
,
E.
, and
Linke
,
A.
, 2006, “
Stabilized Finite Element Schemes for Incompressible Flow Using Scott-Vogelius Elements
,”
Weierstrass Institute for Applied Analysis and Stochastics
, Preprint No. 1165.
23.
Gerischer
,
H.
,
Mattes
,
I.
, and
Braun
,
R.
, 1965, “
Elektrolyse Im Strömungskanal
,”
J. Electrochem. Chem.
,
10
, pp.
553
567
.
24.
Lourakis
,
M.
, 2004, “
levmar: Levenberg-Marquardt Nonlinear Least Squares Algorithms in C/C++
,” http://www.ics.forth.gr/lourakis/levmar/http://www.ics.forth.gr/lourakis/levmar/, accessed on 2007-01-11.
25.
Wessel
,
P.
, and
Smith
,
W. H. F.
, 1998, “
New, Improved Version of Generic Mapping Tools Released
,”
EOS Trans. Am. Geophys. Union
0096-3941,
79
(
47
), p.
579
.
You do not currently have access to this content.