The purpose of this work is to investigate, by a thermodynamic analysis, the effects of the process variables on the performance of an autothermal reforming (ATR)-based fuel processor, operating on ethanol as fuel, integrated into an overall proton exchange membrane (PEM) fuel cell system. This analysis has been carried out finding the better operating conditions to maximize hydrogen yield and to minimize CO carbon monoxide production. In order to evaluate the overall efficiency of the system, PEM fuel cell operations have been analyzed by an available parametric model.

1.
Fishtik
,
I.
,
Alexander
,
A.
,
Datta
,
R.
, and
Geana
,
D.
, 2000, “
A Thermodynamic Analysis of Hydrogen Production by Steam Reforming of Ethanol via Response Reactions
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
31
45
.
2.
Sun
,
J.
,
Qiu
,
X.
,
Wu
,
F.
,
Zhu
,
W.
,
Wang
,
W.
, and
Hao
,
S.
, 2004, “
Hydrogen From Steam Reforming of Ethanol in Low and Middle Temperature Range for Fuel Cell Application
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
1075
1081
.
3.
Fierro
,
V.
,
Klouz
,
V.
,
Akdim
,
O.
, and
Mirodatos
,
C.
, 2002, “
Oxidative Reforming of Biomass Derived Ethanol for Hydrogen Production in Fuel Cell Applications
,”
Catal. Today
0920-5861,
75
, pp.
141
144
.
4.
Liguras
,
D. K.
,
Goundani
,
K.
, and
Verykios
,
X. E.
, 2004, “
Production of Hydrogen for Fuel Cells by Catalytic Partial Oxidation of Ethanol Over Structured Ru Catalysts
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
419
427
.
5.
Ahmed
,
S.
, and
Krumpelt
,
M.
, 2001, “
Hydrogen From Hydrocarbon Fuels for Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
26
, pp.
291
301
.
6.
Seo
,
Y. S.
,
Shirley
,
A.
, and
Kolaczkowski
,
S. T.
, 2002, “
Evaluation of Thermodynamically Favourable Operating Conditions for Production of Hydrogen in Three Reforming Technologies
,”
J. Power Sources
0378-7753,
108
, pp.
213
225
.
7.
Song
,
C.
, 2002, “
Fuel Processing for Low-Temperature and High-Temperature Fuel Cells: Challenges and Opportunities for Sustainable Development in the 21st Century
,”
Catal. Today
0920-5861,
77
, pp.
17
49
.
8.
Lee
,
S. H. D.
,
Applegate
,
D. V.
,
Ahmed
,
S.
,
Calderone
,
S. G.
, and
Harvey
,
T. L.
, 2005, “
Hydrogen From Natural Gas: Part I - Autothermal Reforming in an Integrated Fuel Processor
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
829
842
.
9.
Lattner
,
J. R.
, and
Harold
,
M. P.
, 2004, “
Comparison of Conventional and Membrane Reactor Fuel Processors for Hydrocarbon-Based PEM Fuel Cell Systems
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
393
417
.
10.
Semelsberger
,
T. A.
,
Brown
,
L. F.
,
Borup
,
R. L.
, and
Inbody
,
M. A.
, 2004, “
Equilibrium Products From Autothermal Processes for Generating Hydrogen-Rich Fuel Cell Feeds
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
1047
1064
.
11.
Ye
,
L.
,
Wan
,
R.
,
Wan
,
D.
,
Abu Bakar
,
M.
, and
Zahira
,
Y.
, 2000, “
Hydrogen Production From Steam-Methanol Reforming: Thermodynamic Analysis
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
47
53
.
12.
Mathiak
,
J.
,
Heinzel
,
A.
,
Roes
,
J.
,
Kalk
,
Th.
,
Kraus
,
H.
, and
Brandt
,
H.
, 2004, “
Coupling of a 2.5kW Steam Reformer With a 1kWel PEM Fuel Cell
,”
J. Power Sources
0378-7753,
131
, pp.
112
119
.
13.
Cicconardi
,
S. P.
, and
Perna
,
A.
, 2005, “
Thermodynamic Analysis of Hydrogen Production From Ethanol
,” 3rd European PEFC Forum, Lucerne, Switzerland, July 4–8.
14.
Chan
,
S. H.
, and
Wang
,
H. M.
, 2004, “
Thermodynamic and Kinetic Modelling of an Autothermal Methanol Reformer
,”
J. Power Sources
0378-7753,
126
, pp.
8
15
.
15.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Harris
,
T. J.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 1995, “
Performance Modeling of Ballard Mark IV Solid Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
142
, pp.
1
8
.
16.
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Hooper
,
M. A. I.
,
Jensen
,
H. M.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 2000, “
Development and Application of a Generalised Steady-State Electrochemical Model for a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
86
, pp.
173
180
.
17.
Fowler
,
M. W.
,
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 2002, “
Incorporation of Voltage Degradation Into a Generalised Steady-State Electrochemical Model for a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
106
, pp.
274
283
.
18.
Grujicic
,
M.
, and
Chittajallu
,
K. M.
, 2004, “
Design and Optimization of Polymer Electrolyte Membrane (PEM) Fuel Cells
,”
Appl. Surf. Sci.
0169-4332,
227
, pp.
56
72
.
You do not currently have access to this content.