An integrated methodology aims at estimation of the actual possibility of operating an hybrid system based on a solid oxide fuel cell and a micro gas turbine, by paying special attention to the adaptation of the rotating and stationary components to the off-design conditions. The method leads to the definition of the operating space of the hybrid system, thus allowing detection of optimal choices for an efficient part-load operation. The computational fluid dynamics (CFD)-based analysis of the combustion chamber is addressed to the verification of the response of this component when employed as an afterburner of the residual species from the fuel cell.

1.
Cameretti
,
M. C.
,
Pontecorvo
,
A.
, and
Tuccillo
,
R.
, 2005, “
Analysis and Optimization of a Fuel Cell—MGT Hybrid System
,” (in Italian)
Proceedings of 60th A.T.I. Conference
, September 13–15, Rome, art.08/15.
2.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
, 2002, “
Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant
,”
J. Power Sources
0378-7753,
109
, pp.
111
120
.
3.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
, pp.
352
368
.
4.
Pangalis
,
M. G.
,
Martinez-Botas
,
R. F.
, and
Brandon
,
N. P.
, 2002, “
Integration of Solid Oxide Fuel Cells Into Gas Turbine Power Generation Cycles. Part 1: Fuel Cell Thermodynamic Modelling
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
216
, pp.
145
154
.
5.
Zhang
,
W.
,
Croiset
,
E.
,
Douglas
,
P. L.
,
Fowler
,
M. W.
, and
Entchev
,
E.
, 2005, “
Simulation of a Tubular Solid Oxide Fuel Cell Stack Using AspenPlus Unit Operation Models
,”
J. Power Sources
0378-7753,
46
, pp.
181
196
.
6.
Campanari
,
S.
, 2004, “
Parametric Analysis of Small Scale Recuperated SOFC/GAS TURBINE Cycles
,” ASME Paper No. 2004-GT-53933.
7.
Song
,
T.
,
Ro
,
S.
,
Suzuki
,
K.
,
Sohn
,
J.
,
Kim
,
J.
, and
Kim
,
T.
, 2004, “
Parametric Studies for a Performance Analysis of a SOFC/MGT Hybrid Power System Based on a Quasi-2D Model
,” ASME Paper No. 2004-GT-53933.
8.
Massardo
,
A. F.
, and
Lubelli
,
F.
, 2000, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles. Part A
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
1
27
.
9.
Singhal
,
S. C.
, 2000, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
0167-2738,
135
,
305
314
.
10.
Costamagna
,
P.
,
Arato
,
E.
,
Antonucci
,
P. L.
, and
Antonucci
,
V.
, 1996, “
Partial Oxidation of CH4 in Solid Oxide Fuel Cells: Simulation Model of the Electrochemical Reactor and Experimental Validation
,”
Chem. Eng. Sci.
0009-2509,
51
,
3013
3023
.
11.
Magistri
,
L.
,
Bozzo
,
R.
,
Costamagna
,
P.
, and
Massardo
,
A. F.
, 2002, “
Simplified Versus Detailed SOFC Reactor Models and Influence on the Simulation of the Design Point Performance of Hybrid Systems
,” ASME Paper No. 2002-GT-30653.
12.
Gemmen
,
S.
, and
Liese
,
E.
, 2000, “
Development of Dynamic Modelling Tools for Solid Oxide and Molten Carbonate Fuel Cell Gas Turbine Systems
,” ASME Paper No. 2000-GT-504.
13.
Karvountzi
,
C.
,
Price
,
M.
, and
Duby
,
F.
, 2003, “
Optimization of a MCFC/TURBINE Hybrid System for Cogeneration
,” ASME Paper No. 2003-IJPGC-40061.
14.
Marsano
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2004, “
Ejector Performance Influence on a Solid Oxide Fuel Cell Anodic Recirculation System
,”
J. Power Sources
0378-7753,
129
, pp.
216
228
.
15.
Campanari
,
S.
, 2001, “
Thermodynamic Model and Parametric Analysis of a Tubular SOFC Modul
,”
J. Power Sources
0378-7753,
92
, pp.
26
34
.
16.
Freeh
,
E.
,
Pratt
,
W.
, and
Brouwer
,
J.
, 2004, “
Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications
,” ASME Paper No. 2004-GT-53616.
17.
Chan
,
S. H.
, and
Xia
,
Z. T.
, 2002, “
Polarization Effects in Electrolyte/Electrode-Supported Solid Oxide Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
32
, pp.
339
347
.
18.
Bohn
,
D.
,
Poppe
,
N.
, and
Lepers
,
J.
, 2002, “
Assessment of the Potential of Combined Micro Gas Turbine and High Temperature Fuel Cell Systems
,” ASME Paper No. 2002-GT-30112.
19.
Nishida
,
K.
,
Takagi
,
T.
,
Kinoshita
,
S.
, and
Tsuji
,
T.
, 2002, “
Performance Evaluation of Multi-Stage SOFC and Gas Turbine Combined Systems
,” ASME Paper No. 2002-GT-30109.
20.
Kimijima
,
S.
, and
Kasagi
,
N.
, 2002, “
Performance Evaluation of Gas Turbine-Fuel Cell Hybrid Micro Generation System
,” ASME Paper No. 2002-GT-30111.
21.
Rienshe
,
E.
,
Meusinger
,
J.
,
Stimming
,
U.
, and
Unverzagt
,
G.
, 1998, “
Optimization of a 200kW SOFC Cogeneration Power Plant. Part II: Variation of the Flowsheet
,”
J. Power Sources
0378-7753,
71
, pp.
306
314
.
22.
Chan
,
S. H.
, and
Ding
,
O. L.
, 2005, “
Simulation of a Solid Oxide Fuel Cell Power System Fed by Methane
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
167
179
.
23.
Magistri
,
L.
,
Trasino
,
F.
, and
Costamagna
,
P.
, 2004, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids—Part: A Fuel Cell Models
,” ASME Paper No. 2004-GT-53842.
24.
Ferrari
,
M.
,
Traverso
,
A.
, and
Massardo
,
A. F.
, 2004, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids—Part: B Anode Recirculation Model
,” ASME Paper No. 2004-GT-53716.
25.
Magistri
,
L.
,
Ferrari
,
M.
,
Traverso
,
A.
,
Costamagna
,
P.
, and
Massardo
,
A. F.
, 2004, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids—Part: C Whole-Cycle Model
,” ASME Paper No. 2004-GT-53845.
26.
Bozza
,
F.
,
Cameretti
,
M. C.
, and
Tuccillo
,
R.
, 2001, “
Performance Prediction and Combustion Modelling of Low-CO2 Emission Gas Turbines
,” ASME Paper No. 2001-GT-0066.
27.
Larminie
,
J.
, and
Dicks
,
A.
, 2004,
Fuel Cell Systems Explained
,
Wiley
, New York.
28.
Tornabene
,
R.
,
Wang
,
X.
,
Steffen
,
C. J.
Jr.
, and
Freeh
,
J. E.
, 2005, “
Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System
,” ASME Paper No. 2005-GT-68334.
29.
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
, 2005, “
Safe Dynamic Operation of a Simple SOFC/GT Hybrid System
,” ASME Paper No. 2005-GT-68481.
30.
Yang
,
W. J.
,
Kim
,
T. S.
,
Kim
,
J. H.
,
Sohn
,
J. L.
, and
Ro
,
S. T.
, 2005, “
Comparative Performance Assessment of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems Considering Various Design Options
,” ASME Paper No. 2005-68533.
31.
Bozza
,
F.
,
Cameretti
,
M. C.
, and
Tuccillo
,
R.
, 2004, “
The Employment of Hydrogenated Fuels From Natural Gas Reforming: Gas Turbine and Combustion Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
489
497
.
32.
Bozza
,
F.
,
Cameretti
,
M. C.
, and
Tuccillo
,
R.
, 2005, “
Adapting the Micro-Gas Turbine Operation to Variable Thermal and Electrical Requirements
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
514
524
.
33.
Tuccillo
,
R.
, and
Cameretti
,
M. C.
, 2005, “
Combustion and Combustors for MGT Applications
,” VKI/LS on “Micro Gas Turbines,” RTO-MP-AVT-131.
34.
Tuccillo
,
R.
, 2005, “
Performance and Transient Behaviour of MTG Based Energy Systems
,” VKI/LS on “Micro Gas Turbines,” RTO-MP-AVT-131.
35.
Cameretti
,
M. C.
, and
Tuccillo
,
R.
, 2005, “
A CFD Based Off-Design Study of Micro-Gas Turbines Combustors
,” ASME Paper No. GT-2005-68924.
36.
Amsden
,
A. A.
, 1997, “
KIVA-III v: Block Structured KIVA Program Engine With Vertical or Canted Valves
,” LA - Los Angeles, 13313 - MS, Los Alamos.
37.
Croce
,
G.
,
Mori
,
G.
, and
Parente
,
J.
, 2003, “
Assessment of Traditional and Flamelets Models for Micro Turbine Combustion Chamber Optimisation
,” ASME Paper No. GT-2003-38385.
38.
Parente
,
J.
,
Mori
,
G.
,
Anisimov
,
V.
, and
Croce
,
G.
, 2004, “
Micro Gas Turbine Combustion Chamber Design and CFD Analysis
,” ASME Paper No. GT2004-54247.
39.
Cameretti
,
M. C.
, and
Tuccillo
,
R.
, 2004, “
Comparing Different Solutions for the Micro-Gas Turbine Combustor
,” ASME Paper No. 2004-GT-53286.
40.
Bozza
,
F.
, and
Tuccillo
,
R.
, 2004, “
Transient Operation Analysis of a Cogenerating Micro-Gas Turbine
, ASME Paper No. ESDA-2004-58079.
You do not currently have access to this content.