Abstract

As two typical nickel-rich layered oxide cathodes, LiNi0.8Co0.15Al0.05O2 (NCA) and LiNi0.8Co0.1Mn0.1O2 (NCM811) are widely applicated in commercial high-energy batteries for electric vehicles. However, a comprehensive assessment of their thermal characteristics in a full cell is currently lacking. In this article, we conducted a monomer level thermal runaway test on NCA|SiC pouch cell and NCM811|SiC pouch cell through the accelerated rate calorimetry (ARC) test. The results showed that the {T1, T2, T3} of NCA|SiC pouch cell and NCM811|SiC pouch cell are {113.8 °C, 230.4 °C, 801.4 °C} and {91.3 °C, 202.1 °C, 745 °C}, respectively. Then the thermal stability of NCA and NCM811 was tested by differential scanning calorimeter coupled with thermal gravimetric analysis, and mass spectrometry (DSC-TG-MS). The results showed that the phase transition temperature of NCA is higher than that of NCM811. However, when NCA and NCM811 were mixed with anode electrode materials or electrolyte, NCA produced significantly more heat than NCM811. By confirming the thermal properties of NCA|SiC pouch cell and NCM811|SiC pouch cell, a deeper understanding of battery thermal runaway was achieved, which is helpful for the design of high-safety lithium-ion batteries in the future.

References

1.
Wang
,
B.
,
Zhang
,
F.-l.
,
Zhou
,
X.-a.
,
Wang
,
P.
,
Wang
,
J.
,
Ding
,
H.
,
Dong
,
H.
,
Liang
,
W.-b.
,
Zhang
,
N.-s.
, and
Li
,
S.-y.
,
2021
, “
Which of the Nickel-Rich NCM and NCA Is Structurally Superior as a Cathode Material for Lithium-Ion Batteries?
J. Mater. Chem. A
,
9
(
23
), pp.
13540
13551
.
2.
Li
,
W.
,
Song
,
B.
, and
Manthiram
,
A.
,
2017
, “
High-Voltage Positive Electrode Materials for Lithium-Ion Batteries
,”
Chem. Soc. Rev.
,
46
(
10
), pp.
3006
3059
.
3.
Wang
,
Y.
,
Ren
,
D.
,
Feng
,
X.
,
Wang
,
L.
, and
Ouyang
,
M.
,
2022
, “
Thermal Runaway Modeling of Large Format High-Nickel/Silicon-Graphite Lithium-Ion Batteries Based on Reaction Sequence and Kinetics
,”
Appl. Energy
,
306
, p.
117943
.
4.
Feng
,
X.
,
Merla
,
Y.
,
Weng
,
C.
,
Ouyang
,
M.
,
He
,
X.
,
Liaw
,
B. Y.
,
Santhanagopalan
,
S.
, et al
,
2020
, “
A Reliable Approach of Differentiating Discrete Sampled-Data for Battery Diagnosis
,”
eTransportation
,
3
, p.
100051
.
5.
Chakraborty
,
A.
,
Kunnikuruvan
,
S.
,
Kumar
,
S.
,
Markovsky
,
B.
,
Aurbach
,
D.
,
Dixit
,
M.
, and
Major
,
D. T.
,
2020
, “
Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–xyCoxMnyO2 and LiNi1–xyCoxAlyO2
,”
Chem. Mater.
,
32
(
3
), pp.
915
952
.
6.
Xu
,
J.
,
Lin
,
F.
,
Doeff
,
M. M.
, and
Tong
,
W.
,
2017
, “
A Review of Ni-Based Layered Oxides for Rechargeable Li-Ion Batteries
,”
J. Mater. Chem. A
,
5
(
3
), pp.
874
901
.
7.
Li
,
W.
,
Liu
,
X.
,
Xie
,
Q.
,
You
,
Y.
,
Chi
,
M.
, and
Manthiram
,
A.
,
2020
, “
Long-Term Cyclability of NCM-811 at High Voltages in Lithium-Ion Batteries: An In-Depth Diagnostic Study
,”
Chem. Mater.
,
32
(
18
), pp.
7796
7804
.
8.
Xia
,
H.
,
Liu
,
C.
,
Shen
,
L.
,
Yu
,
J.
,
Li
,
B.
,
Kang
,
F.
, and
He
,
Y.-B.
,
2020
, “
Structure and Thermal Stability of LiNi0.8Co0.15Al0.05O2 After Long Cycling at High Temperature
,”
J. Power Sources
,
450
, p.
227695
.
9.
Feng
,
X.
,
Ren
,
D.
,
He
,
X.
, and
Ouyang
,
M.
,
2020
, “
Mitigating Thermal Runaway of Lithium-Ion Batteries
,”
Joule
,
4
(
4
), pp.
743
770
.
10.
Chen
,
S.
,
Zhang
,
G.
,
Zhu
,
J.
,
Feng
,
X.
,
Wei
,
X.
,
Ouyang
,
M.
, and
Dai
,
H.
,
2022
, “
Multi-objective Optimization Design and Experimental Investigation for a Parallel Liquid Cooling-Based Lithium-Ion Battery Module Under Fast Charging
,”
Appl. Therm. Eng.
,
211
, p.
118503
.
11.
Noh
,
H.-J.
,
Youn
,
S.
,
Yoon
,
C. S.
, and
Sun
,
Y.-K.
,
2013
, “
Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
233
, pp.
121
130
.
12.
Hwang
,
S.
,
Kim
,
S. M.
,
Bak
,
S.-M.
,
Kim
,
S. Y.
,
Cho
,
B.-W.
,
Chung
,
K. Y.
,
Lee
,
J. Y.
,
Stach
,
E. A.
, and
Chang
,
W.
,
2015
, “
Using Real-Time Electron Microscopy to Explore the Effects of Transition-Metal Composition on the Local Thermal Stability in Charged LixNiyMnzCo1–yzO2 Cathode Materials
,”
Chem. Mater.
,
27
(
11
), pp.
3927
3935
.
13.
Myung
,
S.-T.
,
Maglia
,
F.
,
Park
,
K.-J.
,
Yoon
,
C. S.
,
Lamp
,
P.
,
Kim
,
S.-J.
, and
Sun
,
Y.-K.
,
2016
, “
Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives
,”
ACS Energy Lett.
,
2
(
1
), pp.
196
223
.
14.
Nam
,
K.-W.
,
Bak
,
S.-M.
,
Hu
,
E.
,
Yu
,
X.
,
Zhou
,
Y.
,
Wang
,
X.
,
Wu
,
L.
,
Zhu
,
Y.
,
Chung
,
K.-Y.
, and
Yang
,
X.-Q.
,
2013
, “
Combining In Situ Synchrotron X-Ray Diffraction and Absorption Techniques With Transmission Electron Microscopy to Study the Origin of Thermal Instability in Overcharged Cathode Materials for Lithium-Ion Batteries
,”
Adv. Funct. Mater.
,
23
(
8
), pp.
1047
1063
.
15.
Bak
,
S.-M.
,
Nam
,
K.-W.
,
Chang
,
W.
,
Yu
,
X.
,
Hu
,
E.
,
Hwang
,
S.
,
Stach
,
E. A.
,
Kim
,
K.-B.
,
Chung
,
K. Y.
, and
Yang
,
X.-Q.
,
2013
, “
Correlating Structural Changes and Gas Evolution During the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials
,”
Chem. Mater.
,
25
(
3
), pp.
337
351
.
16.
Konishi
,
H.
,
Yuasa
,
T.
, and
Yoshikawa
,
M.
,
2011
, “
Thermal Stability of Li1−YNixMn(1−x)/2Co(1−x)/2O2 Layer-Structured Cathode Materials Used in Li-Ion Batteries
,”
J. Power Sources
,
196
(
16
), pp.
6884
6888
.
17.
Hwang
,
S.
,
Chang
,
W.
,
Kim
,
S. M.
,
Su
,
D.
,
Kim
,
D. H.
,
Lee
,
J. Y.
,
Chung
,
K. Y.
, and
Stach
,
E. A.
,
2014
, “
Investigation of Changes in the Surface Structure of LixNi0.8Co0.15Al0.05O2 Cathode Materials Induced by the Initial Charge
,”
Chem. Mater.
,
26
(
2
), pp.
1084
1092
.
18.
Bak
,
S. M.
,
Hu
,
E.
,
Zhou
,
Y.
,
Yu
,
X.
,
Senanayake
,
S. D.
,
Cho
,
S. J.
,
Kim
,
K. B.
,
Chung
,
K. Y.
,
Yang
,
X. Q.
, and
Nam
,
K. W.
,
2014
, “
Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy
,”
ACS Appl. Mater. Interfaces
,
6
(
24
), pp.
22594
22601
.
19.
Liu
,
X.
,
Ren
,
D.
,
Hsu
,
H.
,
Feng
,
X.
,
Xu
,
G.-L.
,
Zhuang
,
M.
,
Gao
,
H.
, et al
,
2018
, “
Thermal Runaway of Lithium-Ion Batteries Without Internal Short Circuit
,”
Joule
,
2
(
10
), pp.
2047
2064
.
20.
Hou
,
J.
,
Feng
,
X.
,
Wang
,
L.
,
Liu
,
X.
,
Ohma
,
A.
,
Lu
,
L.
,
Ren
,
D.
, et al
,
2021
, “
Unlocking the Self-Supported Thermal Runaway of High-Energy Lithium-Ion Batteries
,”
Energy Storage Mater.
,
39
, pp.
395
402
.
21.
Wu
,
C.
,
Wu
,
Y.
,
Xu
,
X.
,
Ren
,
D.
,
Li
,
Y.
,
Chang
,
R.
,
Deng
,
T.
,
Feng
,
X.
, and
Ouyang
,
M.
,
2022
, “
Synergistic Dual-Salt Electrolyte for Safe and High-Voltage LiNi0.8Co0.1Mn0.1O2//Graphite Pouch Cells
,”
ACS Appl. Mater. Interfaces
,
14
(
8
), pp.
10467
10477
.
22.
Kasnatscheew
,
J.
,
Röser
,
S.
,
Börner
,
M.
, and
Winter
,
M.
,
2019
, “
Do Increased Ni Contents in LiNixMnyCozO2 (NMC) Electrodes Decrease Structural and Thermal Stability of Li Ion Batteries? A Thorough Look by Consideration of the Li+ Extraction Ratio
,”
ACS Appl. Energy Mater.
,
2
(
11
), pp.
7733
7737
.
23.
Yoon
,
C. S.
,
Park
,
K.-J.
,
Kim
,
U.-H.
,
Kang
,
K. H.
,
Ryu
,
H.-H.
, and
Sun
,
Y.-K.
,
2017
, “
High-Energy Ni-Rich Li[NixCoyMn1–xy]O2 Cathodes via Compositional Partitioning for Next-Generation Electric Vehicles
,”
Chem. Mater.
,
29
(
24
), pp.
10436
10445
.
24.
Feng
,
X.
,
Sun
,
J.
,
Ouyang
,
M.
,
He
,
X.
,
Lu
,
L.
,
Han
,
X.
,
Fang
,
M.
, and
Peng
,
H.
,
2014
, “
Characterization of Large Format Lithium Ion Battery Exposed to Extremely High Temperature
,”
J. Power Sources
,
272
, pp.
457
467
.
25.
Feng
,
X.
,
Zheng
,
S.
,
Ren
,
D.
,
He
,
X.
,
Wang
,
L.
,
Cui
,
H.
,
Liu
,
X.
, et al
,
2019
, “
Investigating the Thermal Runaway Mechanisms of Lithium-Ion Batteries Based on Thermal Analysis Database
,”
Appl. Energy
,
246
, pp.
53
64
.
26.
Wang
,
Y.
,
Ren
,
D.
,
Feng
,
X.
,
Wang
,
L.
, and
Ouyang
,
M.
,
2021
, “
Thermal Kinetics Comparison of Delithiated Li[NixCoyMnz]O2 Cathodes
,”
J. Power Sources
,
514
, p.
230582
.
27.
Wu
,
C.
,
Wu
,
Y.
,
Feng
,
X.
,
Wang
,
H.
,
Zhang
,
F.
,
Chen
,
S.
,
Li
,
B.
,
Deng
,
T.
, and
Ouyang
,
M.
,
2022
, “
Ultra-High Temperature Reaction Mechanism of LiNi0.8Co0.1Mn0.1O2 Electrode
,”
J. Energy Storage
,
52
, p.
104870
.
28.
Eshetu
,
G. G.
,
Grugeon
,
S.
,
Laruelle
,
S.
,
Boyanov
,
S.
,
Lecocq
,
A.
,
Bertrand
,
J. P.
, and
Marlair
,
G.
,
2013
, “
In-depth Safety-Focused Analysis of Solvents Used in Electrolytes for Large Scale Lithium Ion Batteries
,”
Phys. Chem. Chem. Phys.
,
15
(
23
), pp.
9145
9155
.
29.
Huang
,
Y.
,
Lin
,
Y. C.
,
Jenkins
,
D. M.
,
Chernova
,
N. A.
,
Chung
,
Y.
,
Radhakrishnan
,
B.
,
Chu
,
I. H.
, et al
,
2016
, “
Thermal Stability and Reactivity of Cathode Materials for Li-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
8
(
11
), pp.
7013
7021
.
30.
Liu
,
X.
,
Yin
,
L.
,
Ren
,
D.
,
Wang
,
L.
,
Ren
,
Y.
,
Xu
,
W.
,
Lapidus
,
S.
, et al
,
2021
, “
In Situ Observation of Thermal-Driven Degradation and Safety Concerns of Lithiated Graphite Anode
,”
Nat. Commun.
,
12
(
1
), p.
4235
.
You do not currently have access to this content.