Abstract

LiTiOPO4 was prepared by solid-phase combustion method using citric acid as fuel. The LiTiOPO4 materials were characterized by X-ray diffraction test (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The XRD test showed that the synthesized samples were pure phases and the addition of different weight fractions of the combustion agent citric acid did not change the phase structure of the LiTiOPO4. The microscopic observations revealed that the LiTiOPO4 prepared after the addition of citric acid as a combustion agent was a sheet-like stacked structure. The electrochemical test results showed that the rate discharge capacity of LiTiOPO4 anode at 5000 mA g−1 maintains 184.7 mAh g−1 in the voltage range of 0.01–3.0 V and keeps at 147.2 mAh g−1 after 500 cycles. The LiTiOPO4 anode exhibits excellent cycling stability and good reversibility, which is attributed to the high crystallinity of LiTiOPO4 prepared by solid-phase combustion and the lamellar stacked layer structure that facilitates lithium-ion insertion/de-insertion.

References

1.
Cano
,
Z. P.
,
Banham
,
D.
,
Ye
,
S.
,
Hintennach
,
A.
,
Lu
,
J.
,
Fowler
,
M.
, and
Chen
,
Z.
,
2018
, “
Batteries and Fuel Cells for Emerging Electric Vehicle Markets
,”
Nat. Energy
,
3
(
4
), pp.
279
289
.
2.
Pomerantseva
,
E.
,
Bonaccorso
,
F.
,
Feng
,
X.
,
Cui
,
Y.
, and
Gogotsi
,
Y.
,
2019
, “
Energy Storage: The Future Enabled by Nanomaterials
,”
Science
,
366
(
6468
), pp.
1
12
.
3.
Kim
,
U.-H.
,
Jun
,
D.-W.
,
Park
,
K.-J.
,
Zhang
,
Q.
,
Kaghazchi
,
P.
,
Aurbach
,
D.
,
Major
,
D. T.
, et al
,
2018
, “
Pushing the Limit of Layered Transition Metal Oxide Cathodes for High-Energy Density Rechargeable Li Ion Batteries
,”
Energy Environ. Sci.
,
11
(
5
), pp.
1271
1279
.
4.
Wu
,
F.
,
Maier
,
J.
, and
Yu
,
Y.
,
2020
, “
Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries
,”
Chem. Soc. Rev.
,
49
(
5
), pp.
1569
1614
.
5.
Cao
,
B.
,
Zhang
,
Q.
,
Liu
,
H.
,
Xu
,
B.
,
Zhang
,
S.
,
Zhou
,
T.
,
Mao
,
J.
, et al
,
2018
, “
Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium-Ion Batteries
,”
Adv. Energy Mater.
,
8
(
25
), pp.
1
7
.
6.
Xie
,
L.
,
Tang
,
C.
,
Bi
,
Z.
,
Song
,
M.
,
Fan
,
Y.
,
Yan
,
C.
,
Li
,
X.
,
Su
,
F.
,
Zhang
,
Q.
, and
Chen
,
C.
,
2021
, “
Hard Carbon Anodes for Next-Generation Li-Ion Batteries: Review and Perspective
,”
Adv. Energy Mater.
,
11
(
38
), pp.
1
22
.
7.
Liu
,
W.
,
Lu
,
B.
,
Liu
,
X.
,
Gan
,
Y.
,
Zhang
,
S.
, and
Shi
,
S.
,
2021
, “
In Situ Synthesis of the Peapod-Like Cu–SnO2@Copper Foam as Anode With Excellent Cycle Stability and High Area Specific Capacity
,”
Adv. Funct. Mater.
,
31
(
33
), pp.
1
10
.
8.
Wu
,
H. M.
,
Belharouak
,
I.
,
Deng
,
H.
,
Abouimrane
,
A.
,
Sun
,
Y.-K.
, and
Aminea
,
K.
,
2009
, “
Development of LiNi0.5Mn1.5O4/Li4Ti5O12 System With Long Cycle Life
,”
J. Electrochem. Soc.
,
156
(
12
), pp.
A1047
A1050
.
9.
Bleith
,
P.
,
Novák
,
P.
, and
Villevieille
,
C.
,
2013
, “
Influence of Cut-Off Potential on the Electrochemistry of M0.5TiOPO4(M = Fe, Cu) Synthesized by a New Route
,”
J. Electrochem. Soc.
,
160
(
9
), pp.
A1534
A1538
.
10.
Eddahaoui
,
K.
,
Benmokhtar
,
S.
,
Manoun
,
B.
,
Belaaouad
,
S.
, and
Lazor
,
P.
,
2012
, “
Vibrational Spectra and Factor Group Analysis of M0.5TiOPO4 Oxyphosphates (M = Mg, Zn, Ni, Co, Fe and Cu)
,”
Spectrochim. Acta, Part A
,
99
, pp.
81
89
.
11.
Fu
,
Y.
,
Ming
,
H.
,
Zhao
,
S.
,
Guo
,
J.
,
Chen
,
M.
,
Zhou
,
Q.
, and
Zheng
,
J.
,
2015
, “
A New Insight Into the LiTiOPO4 as an Anode Material for Lithium Ion Batteries
,”
Electrochim. Acta
,
185
, pp.
211
217
.
12.
Galceran
,
M.
,
Rikarte
,
J.
,
Zarrabeitia
,
M.
,
Pujol
,
M. C.
,
Aguiló
,
M.
, and
Casas-Cabanas
,
M.
,
2019
, “
Investigation of NaTiOPO4 as Anode for Sodium-Ion Batteries: A Solid Electrolyte Interphase Free Material?
,”
ACS Appl. Energy Mater.
,
2
(
3
), pp.
1923
1931
.
13.
Lasri
,
K.
,
Brandell
,
D.
,
Saadoune
,
I.
,
Larzek
,
M.
, and
Edström
,
K.
,
2016
, “
Electrochemical Characterizations of Co0.5TiOPO4 as Anode Material for Lithium-Ion Batteries
,”
Sol. Energy Mater. Sol. Cells
,
148
, pp.
44
51
.
14.
Godbole
,
V. A.
,
Villevieille
,
C.
, and
Novák
,
P.
,
2013
, “
Effect of Metal Ion and Ball Milling on the Electrochemical Properties of M0.5TiOPO4 (M = Ni, Cu, Mg)
,”
Electrochim. Acta
,
93
, pp.
179
188
.
15.
Morimoto
,
H.
,
Ito
,
D.
,
Ogata
,
Y.
,
Suzuki
,
T.
,
Sakamaki
,
K.
,
Tsuji
,
T.
,
Hirukawa
,
M.
,
Matsumoto
,
A.
, and
Tobishima
,
S.-I.
,
2016
, “
Charge/Discharge Behavior of Triclinic LiTiOPO4 Anode Materials for Lithium Secondary Batteries
,”
Electrochemistry
,
84
(
11
), pp.
878
881
.
16.
Zhang
,
X. J.
,
Zhang
,
Y.
,
Zhou
,
Z.
,
Wei
,
J. P.
,
Essehli
,
R.
, and
Bali
,
B. E.
,
2011
, “
Core–Shell Ni0.5TiOPO4/C Composites as Anode Materials in Li Ion Batteries
,”
Electrochim. Acta
,
56
(
5
), pp.
2290
2294
.
17.
Cai
,
Y.
,
Huang
,
Y.
,
Jia
,
W.
,
Zhang
,
Y.
,
Wang
,
X.
,
Guo
,
Y.
,
Jia
,
D.
,
Pang
,
W.
,
Guo
,
Z.
, and
Wang
,
L.
,
2016
, “
Two-Dimensional Dysprosium-Modified Bamboo-Slip-Like Lithium Titanate With High-Rate Capability and Long Cycle Life for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
4
(
45
), pp.
17782
17790
.
18.
Liu
,
S.
,
Shao
,
L.
,
Zhang
,
X.
,
Zhou
,
M.
,
Tao
,
Z.
, and
Chen
,
J.
,
2018
, “
KTiOPO4 as a Novel Anode Material for Sodium-Ion Batteries
,”
J. Alloys Compd.
,
754
, pp.
147
152
.
19.
Luo
,
H.
,
Tang
,
Y.
,
Xiang
,
Z.
,
Wu
,
P.
, and
Li
,
Z.
,
2020
, “
Cl-Doping Strategy to Boost the Lithium Storage Performance of Lithium Titanium Phosphate
,”
Front. Chem.
,
8
(
349
), pp.
1
7
.
20.
Ji
,
X.
,
Liu
,
H.
,
Wu
,
X.
,
Lu
,
Q.
,
Li
,
Z.
, and
Pang
,
Y.
,
2019
, “
Toward Rational Design of N-Doped Li4Ti5O12@Carbon Anode Materials for High-Performance Lithium-Ion Batteries
,”
Ionics
,
26
(
3
), pp.
1211
1220
.
21.
Ding
,
S.
,
Jiang
,
Z.
,
Gu
,
J.
,
Zhang
,
H.
,
Cai
,
J.
, and
Wang
,
D.
,
2020
, “
Carbon-Coated Lithium Titanate: Effect of Carbon Precursor Addition Processes on the Electrochemical Performance
,”
Front. Chem. Sci. Eng.
,
15
(
1
), pp.
148
155
.
22.
Yen
,
P.-Y.
,
Lee
,
M.-L.
,
Gregory
,
D. H.
, and
Liu
,
W.-R.
,
2020
, “
Optimization of Sintering Process on Li1+XAlxTi2-X(PO4)3 Solid Electrolytes for All-Solid-State Lithium-Ion Batteries
,”
Ceram. Int.
,
46
(
12
), pp.
20529
20536
.
You do not currently have access to this content.