Abstract

Anion exchange membrane fuel cells (AEMFCs) are in development as a low-cost alternative to proton exchange membrane fuel cells (PEMFCs). AEMFCs produce water at the anode side and consume it at the cathode side, resulting in no cathode water flooding like in PEMFCs. However, it brings complexity to water transportation behavior and requires appropriate water balance to avoid membrane drying out. In this study, a two-dimensional two-phase multi-physics model has been developed to investigate the impacts of three key electrode parameters (porosity, catalyst loading, and ionomer content) that are responsible for water production and transport as well as the performance of an AEMFC. A piecewise constant function along the x-direction (reactant diffusion direction) is used to apply the gradient on the porosity and platinum loading. The present results show that a larger porosity gradient near the cathode gas diffusion layer (GDL)/flow channel interface and lower near the GDL/microporous layer (MPL) interface can enhance mass transport and water removal, which is benefited the AEMFC performance. However, anode GDL porosity gradients show a lower AEMFC performance compared to the cathode porosity gradients. Moreover, it was confirmed that for both electrodes, the performance of AEMFC was significantly dependent on each electrode parameter.

References

1.
Varcoe
,
J. R.
, and
Slade
,
R. C. T.
,
2005
, “
Prospects for Alkaline Anion-Exchange Membranes in Low Temperature Fuel Cells
,”
Fuel Cells
,
5
(
2
), pp.
187
200
.
2.
Merle
,
G.
,
Wessling
,
M.
, and
Nijmeijer
,
K.
,
2011
, “
Anion Exchange Membranes for Alkaline Fuel Cells: A Review
,”
J. Membr. Sci.
,
377
(
1–2
), pp.
1
35
.
3.
Matsumoto
,
K.
,
Fujigaya
,
T.
,
Yanagi
,
H.
, and
Nakashima
,
N.
,
2011
, “
Very High Performance Alkali Anion-Exchange Membrane Fuel Cells
,”
Adv. Funct. Mater.
,
21
(
6
), pp.
1089
1094
.
4.
Wang
,
Y.-J.
,
Qiao
,
J.
,
Baker
,
R.
, and
Zhang
,
J.
,
2013
, “
Alkaline Polymer Electrolyte Membranes for Fuel Cell Applications
,”
Chem. Soc. Rev.
,
42
(
13
), pp.
5768
5787
.
5.
Machado
,
B. S.
,
Chakraborty
,
N.
, and
Das
,
P. K.
,
2017
, “
Influences of Flow Direction, Temperature and Relative Humidity on the Performance of a Representative Anion Exchange Membrane Fuel Cell: A Computational Analysis
,”
Int. J. Hydrogen Energy
,
42
(
9
), pp.
6310
6323
.
6.
Machado
,
B. S.
,
Chakraborty
,
N.
,
Mamlouk
,
M.
, and
Das
,
P. K.
,
2018
, “
A Three-Dimensional Agglomerate Model of an Anion Exchange Membrane Fuel Cell
,”
ASME J. Electrochem. Energy Convers. Storage
,
15
(
1
), p.
011004
.
7.
Dekel
,
D. R.
,
2018
, “
Review of Cell Performance in Anion Exchange Membrane Fuel Cells
,”
J. Power Sources
,
375
, pp.
158
169
.
8.
Sarapuu
,
A.
,
Kibena-Poldsepp
,
E.
,
Borghei
,
M.
, and
Tammeveski
,
K.
,
2018
, “
Electrocatalysis of Oxygen Reduction on Heteroatom-Doped Nanocarbons and Transition Metal-Nitrogen-Carbon Catalysts for Alkaline Membrane Fuel Cells
,”
J. Mater. Chem. A
,
6
(
3
), pp.
776
804
.
9.
Ramaswamy
,
N.
, and
Mukerjee
,
S.
,
2019
, “
Alkaline Anion-Exchange Membrane Fuel Cells: Challenges in Electrocatalysis and Interfacial Charge Transfer
,”
Chem. Soc. Rev.
,
119
(
23
), pp.
11945
11979
.
10.
Omasta
,
T. J.
,
Park
,
A. M.
,
LaManna
,
J. M.
,
Zhang
,
Y. F.
,
Peng
,
X.
,
Wang
,
L. Q.
,
Jacobson
,
D. L.
, et al
,
2018
, “
Beyond Catalysis and Membranes: Visualizing and Solving the Challenge of Electrode Water Accumulation and Flooding in AEMFCs
,”
Energy Environ. Sci.
,
11
(
4
), pp.
995
995
.
11.
Huang
,
G.
,
Mandal
,
M.
,
Peng
,
X.
,
Yang-Neyerlin
,
A. C.
,
Pivovar
,
B. S.
,
Mustain
,
W. E.
, and
Kohl
,
P. A.
,
2019
, “
Composite Poly(Norbornene) Anion Conducting Membranes for Achieving Durability, Water Management and High Power (3.4 W/cm(2)) in Hydrogen/Oxygen Alkaline Fuel Cells
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
F637
F644
.
12.
Wang
,
L. Q.
,
Peng
,
X.
,
Mustain
,
W. E.
, and
Varcoe
,
J. R.
,
2019
, “
Radiation-Grafted Anion-Exchange Membranes: The Switch From Low- to High-Density Polyethylene Leads to Remarkably Enhanced Fuel Cell Performance
,”
Energy Environ. Sci.
,
12
(
5
), pp.
1575
1579
.
13.
Mustain
,
W. E.
,
2018
, “
Understanding How High-Performance Anion Exchange Membrane Fuel Cells Were Achieved: Component, Interfacial, and Cell-Level Factors
,”
Curr. Opin. Electrochem.
,
12
, pp.
233
239
.
14.
Omasta
,
T. J.
,
Wang
,
L.
,
Peng
,
X.
,
Lewis
,
C. A.
,
Varcoe
,
J. R.
, and
Mustain
,
W. E.
,
2018
, “
Importance of Balancing Membrane and Electrode Water in Anion Exchange Membrane Fuel Cells
,”
J. Power Sources
,
375
, pp.
205
213
.
15.
Gottesfeld
,
S.
,
Dekel
,
D. R.
,
Page
,
M.
,
Bae
,
C.
,
Yan
,
Y. S.
,
Zelenay
,
P.
, and
Kim
,
Y. S.
,
2018
, “
Anion Exchange Membrane Fuel Cells: Current Status and Remaining Challenges
,”
J. Power Sources
,
375
, pp.
170
184
.
16.
Miller
,
H. A.
,
Pagliaro
,
M. V.
,
Bellini
,
M.
,
Bartoli
,
F.
,
Wang
,
L. Q.
,
Salam
,
I.
,
Varcoe
,
J. R.
, and
Vizza
,
F.
,
2020
, “
Integration of a Pd-CeO2/C Anode With Pt and Pt-Free Cathode Catalysts in High Power Density Anion Exchange Membrane Fuel Cells
,”
ACS Appl. Energy Mater.
,
3
(
10
), pp.
10209
10214
.
17.
Varcoe
,
J. R.
,
Slade
,
R. C.
,
Wright
,
G. L.
, and
Chen
,
Y.
,
2006
, “
Steady-State DC and Impedance Investigations of H2/O2 Alkaline Membrane Fuel Cells With Commercial Pt/C, Ag/C, and Au/C Cathodes
,”
J. Phys. Chem. B
,
110
(
42
), pp.
21041
21049
.
18.
Wang
,
Y.
,
Wang
,
G. W.
,
Li
,
G. W.
,
Huang
,
B.
,
Pan
,
J.
,
Liu
,
Q.
,
Han
,
J. J.
,
Xiao
,
L.
,
Lu
,
J. T.
, and
Zhuang
,
L.
,
2015
, “
Pt-Ru Catalyzed Hydrogen Oxidation in Alkaline Media: Oxophilic Effect or Electronic Effect?
,”
Energy Environ. Sci.
,
8
(
1
), pp.
177
181
.
19.
Khadke
,
P. S.
, and
Krewer
,
U.
,
2015
, “
Performance Losses at H2/O2 Alkaline Membrane Fuel Cell
,”
Electrochem. Commun.
,
51
, pp.
117
120
.
20.
Carlson
,
A.
,
Shapturenka
,
P.
,
Eriksson
,
B.
,
Lindbergh
,
G.
,
Lagergren
,
C.
, and
Lindstrom
,
R. W.
,
2018
, “
Electrode Parameters and Operating Conditions Influencing the Performance of Anion Exchange Membrane Fuel Cells
,”
Electrochim. Acta
,
277
, pp.
151
160
.
21.
Maurya
,
S.
,
Noh
,
S.
,
Matanovic
,
I.
,
Park
,
E. J.
,
Villarrubia
,
C. N.
,
Martinez
,
U.
,
Han
,
J.
,
Bae
,
C.
, and
Kim
,
Y. S.
,
2018
, “
Rational Design of Polyaromatic Ionomers for Alkaline Membrane Fuel Cells With > 1 W cm−2 Power Density
,”
Energy Environ. Sci.
,
11
(
11
), pp.
3283
3291
.
22.
Hassan
,
U.
,
Mandal
,
N.
,
Huang
,
M.
,
Firouzjaie
,
G.
,
Kohl
,
H. A.
,
and Mustain
,
P. A.
, and
E
,
W.
,
2020
, “
Achieving High-Performance and 2000h Stability in Anion Exchange Membrane Fuel Cells by Manipulating Ionomer Properties and Electrode Optimization
,”
Adv. Energy Mater.
,
10
(
40
), p.
2001986
.
23.
Chen
,
N. J.
,
Wang
,
H. H.
,
Kim
,
S. P.
,
Kim
,
H. M.
,
Lee
,
W. H.
,
Hu
,
C.
,
Bae
,
J. Y.
, et al
,
2021
, “
Poly(Fluorenyl Aryl Piperidinium) Membranes and Ionomers for Anion Exchange Membrane Fuel Cells
,”
Nat. Commun.
,
12
(
1
), p.
2367
.
24.
Chen
,
N.
, and
Lee
,
Y. M.
,
2021
, “
Anion Exchange Polyelectrolytes for Membranes and Ionomers
,”
Prog. Polym. Sci.
,
113
, p.
101345
.
25.
Chen
,
N.
,
Hu
,
C.
,
Wang
,
H. H.
,
Kim
,
S. P.
,
Kim
,
H. M.
,
Lee
,
W. H.
,
Bae
,
J. Y.
,
Park
,
J. H.
, and
Lee
,
Y. M.
,
2021
, “
Poly (Alkyl-Terphenyl Piperidinium) Ionomers and Membranes With an Outstanding Alkaline-Membrane Fuel-Cell Performance of 2.58 W cm−2
,”
Angew. Chem. Int. Ed.
,
60
, pp.
7710
7718
.
26.
Adabi
,
H.
,
Shakouri
,
A.
,
Ul Hassan
,
N.
,
Varcoe
,
J. R.
,
Zulevi
,
B.
,
Serov
,
A.
,
Regalbuto
,
J. R.
, and
Mustain
,
W. E.
,
2021
, “
High-Performing Commercial Fe-N-C Cathode Electrocatalyst for Anion-Exchange Membrane Fuel Cells
,”
Nat. Energy
,
6
(
8
), pp.
834
843
.
27.
Zhang
,
J. F.
,
Zhu
,
W. K.
,
Huang
,
T.
,
Zheng
,
C. Y.
,
Pei
,
Y. B. A.
,
Shen
,
G. Q.
,
Nie
,
Z. X.
,
Xiao
,
D.
,
Yin
,
Y.
, and
Guiver
,
M. D.
,
2021
, “
Recent Insights on Catalyst Layers for Anion Exchange Membrane Fuel Cells
,”
Adv. Sci.
,
8
(
15
), p.
2100284
.
28.
Yang
,
D. L.
,
Yu
,
H. M.
,
Li
,
G. F.
,
Zhao
,
Y.
,
Liu
,
Y. X.
,
Zhang
,
C. K.
,
Song
,
W.
, and
Shao
,
Z. G.
,
2014
, “
Fine Microstructure of High Performance Electrode in Alkaline Anion Exchange Membrane Fuel Cells
,”
J. Power Sources
,
267
, pp.
39
47
.
29.
Kaspar
,
R. B.
,
Letterio
,
M. P.
,
Wittkopf
,
J. A.
,
Gong
,
K.
,
Gu
,
S.
, and
Yan
,
Y. S.
,
2015
, “
Manipulating Water in High-Performance Hydroxide Exchange Membrane Fuel Cells Through Asymmetric Humidification and Wetproofing
,”
J. Electrochem. Soc.
,
162
(
6
), pp.
F483
F488
.
30.
Britton
,
B.
, and
Holdcroft
,
S.
,
2016
, “
The Control and Effect of Pore Size Distribution in AEMFC Catalyst Layers
,”
J. Electrochem. Soc.
,
163
(
5
), pp.
F353
F358
.
31.
Jang
,
S.
,
Her
,
M.
,
Kim
,
S.
,
Jang
,
J. H.
,
Chae
,
J. E.
,
Choi
,
J.
,
Choi
,
M.
, et al
,
2019
, “
Membrane/Electrode Interface Design for Effective Water Management in Alkaline Membrane Fuel Cells
,”
ACS Appl. Mater. Interfaces
,
11
(
38
), pp.
34805
34811
.
32.
Sebastian
,
D.
,
Lemes
,
G.
,
Luque-Centeno
,
J. M.
,
Martinez-Huerta
,
M. V.
,
Pardo
,
J. I.
, and
Lazaro
,
M. J.
,
2020
, “
Optimization of the Catalytic Layer for Alkaline Fuel Cells Based on Fumatech Membranes and Ionomer
,”
Catalysts
,
10
(
11
), p.
1353
.
33.
Choi
,
D.
,
Jang
,
J. H.
,
Lee
,
D. W.
,
Kang
,
Y. S.
,
Jin
,
H.
,
Lee
,
K. Y.
, and
Yoo
,
S. J.
,
2021
, “
Strategic Design for Promoting Water Behavior Via Ensemble of Thermo-Responsive Polymer Functionalized Catalysts and Reservoir Carbon in Anion Exchange Membrane Fuel Cells
,”
J. Power Sources
,
494
, p.
229738
.
34.
Gutru
,
R.
,
Turtayeva
,
Z.
,
Xu
,
F. N.
,
Maranzana
,
G.
,
Vigolo
,
B.
, and
Desforges
,
A.
,
2020
, “
A Comprehensive Review on Water Management Strategies and Developments in Anion Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
19642
19663
.
35.
Chen
,
Z.
,
2020
, “
Water Balancing
,”
Nat. Energy
,
5
(
1
), pp.
12
13
.
36.
Chung
,
H. T.
,
Martinez
,
U.
,
Matanovic
,
I.
, and
Kim
,
Y. S.
,
2016
, “
Cation-Hydroxide-Water Coadsorption Inhibits the Alkaline Hydrogen Oxidation Reaction
,”
J. Phys. Chem. Lett.
,
7
(
22
), pp.
4464
4469
.
37.
Li
,
D. G.
,
Chung
,
H. T.
,
Maurya
,
S.
,
Matanovic
,
I.
, and
Kim
,
Y. S.
,
2018
, “
Impact of Ionomer Adsorption on Alkaline Hydrogen Oxidation Activity and Fuel Cell Performance
,”
Curr. Opin. Electrochem.
,
12
, pp.
189
195
.
38.
Dumont
,
J. H.
,
Spears
,
A. J.
,
Hjelm
,
R. P.
,
Hawley
,
M.
,
Maurya
,
S.
,
Li
,
D. G.
,
Yuan
,
G. C.
,
Watkins
,
E. B.
, and
Kim
,
Y. S.
,
2020
, “
Unusually High Concentration of Alkyl Ammonium Hydroxide in the Cation-Hydroxide-Water Coadsorbed Layer on Pt
,”
ACS Appl. Mater. Interfaces
,
12
(
1
), pp.
1825
1831
.
39.
Wang
,
T.
,
Shi
,
L.
,
Wang
,
J. H.
,
Zhao
,
Y.
,
Setzler
,
B. P.
,
Rojas-Carbonell
,
S.
, and
Yan
,
Y. S.
,
2019
, “
High-Performance Hydroxide Exchange Membrane Fuel Cells Through Optimization of Relative Humidity, Backpressure and Catalyst Selection
,”
J. Electrochem. Soc.
,
166
(
7
), pp.
F3305
F3310
.
40.
Omasta
,
T. J.
,
Zhang
,
Y. F.
,
Park
,
A. M.
,
Peng
,
X.
,
Pivovar
,
B.
,
Varcoe
,
J. R.
, and
Mustaina
,
W. E.
,
2018
, “
Strategies for Reducing the PGM Loading in High Power AEMFC Anodes
,”
J. Electrochem. Soc
,
165
(
9
), pp.
F710
F717
.
41.
Peng
,
X.
,
Kulkarni
,
D.
,
Huang
,
Y.
,
Omasta
,
T. J.
,
Ng
,
B.
,
Zheng
,
Y. W.
,
Wang
,
L. Q.
, et al
,
2020
, “
Using Operando Techniques to Understand and Design High Performance and Stable Alkaline Membrane Fuel Cells
,”
Nat. Commun.
,
11
(
1
).
42.
Dekel
,
D. R.
,
Rasin
,
I. G.
,
Page
,
M.
, and
Brandon
,
S.
,
2018
, “
Steady State and Transient Simulation of Anion Exchange Membrane Fuel Cells
,”
J. Power Sources
,
375
, pp.
191
204
.
43.
Das
,
P. K.
,
Li
,
X.
,
Xie
,
Z.
, and
Liu
,
Z. S.
,
2011
, “
Effects of Catalyst Layer Structure and Wettability on Liquid Water Transport in Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Energy Res.
,
35
(
15
), pp.
1325
1339
.
44.
Zhan
,
Z.
,
Xiao
,
J.
,
Li
,
D.
,
Pan
,
M.
, and
Yuan
,
R.
,
2006
, “
Effects of Porosity Distribution Variation on the Liquid Water Flux Through Gas Diffusion Layers of PEM Fuel Cells
,”
J. Power Sources
,
160
(
2
), pp.
1041
1048
.
45.
Zhang
,
Y.
,
Verma
,
A.
, and
Pitchumani
,
R.
,
2016
, “
Optimum Design of Polymer Electrolyte Membrane Fuel Cell With Graded Porosity Gas Diffusion Layer
,”
Int. J. Hydrogen Energy
,
41
(
20
), pp.
8412
8426
.
46.
Xing
,
L.
,
Shi
,
W.
,
Das
,
P. K.
, and
Scott
,
K.
,
2017
, “
Inhomogeneous Distribution of Platinum and Ionomer in the Porous Cathode to Maximize the Performance of a PEM Fuel Cell
,”
AlChE J.
,
63
(
11
), pp.
4895
4910
.
47.
Xing
,
L.
,
Wang
,
Y.
,
Das
,
P. K.
,
Scott
,
K.
, and
Shi
,
W.
,
2018
, “
Homogenization of Current Density of PEM Fuel Cells by In-Plane Graded Distributions of Platinum Loading and GDL Porosity
,”
Chem. Eng. Sci.
,
192
, pp.
699
713
.
48.
Xing
,
L.
,
Shi
,
W.
,
Su
,
H.
,
Xu
,
Q.
,
Das
,
P. K.
,
Mao
,
B.
, and
Scott
,
K.
,
2019
, “
Membrane Electrode Assemblies for PEM Fuel Cells: A Review of Functional Graded Design and Optimization
,”
Energy
,
177
, pp.
445
464
.
49.
Xing
,
L.
,
Xu
,
Y.
,
Das
,
P. K.
,
Mao
,
B.
,
Xu
,
Q.
,
Su
,
H.
,
Wu
,
X.
, and
Shi
,
W.
,
2019
, “
Numerical Matching of Anisotropic Transport Processes in Porous Electrodes of Proton Exchange Membrane Fuel Cells
,”
Chem. Eng. Sci.
,
195
, pp.
127
140
.
50.
Huang
,
Z.
,
Cai
,
G.
,
Liu
,
W.
, and
Liu
,
Z.
,
2021
, “
Performance Optimization and Water Management of Polymer Electrolyte Membrane Fuel Cell With Two-Direction Graded Porosity Design of Cathode Gas Diffusion Layer
,”
J. Energy Eng.
,
147
(
2
), p.
04021002
.
51.
Omasta
,
T. J.
,
Peng
,
X.
,
Miller
,
H. A.
,
Vizza
,
F.
,
Wang
,
L.
,
Varcoe
,
J. R.
,
Dekel
,
D. R.
, and
Mustain
,
W. E.
,
2018
, “
Beyond 1.0 W cm−2 Performance Without Platinum: The Beginning of a New Era in Anion Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
165
(
15
), pp.
J3039
J3044
.
52.
Huo
,
S.
,
Park
,
J. W.
,
He
,
P.
,
Wang
,
D.
, and
Jiao
,
K.
,
2017
, “
Analytical Modeling of Liquid Saturation Jump Effect for Hydrogen Alkaline Anion Exchange Membrane Fuel Cell
,”
Int. J. Heat Mass Transfer
,
112
, pp.
891
902
.
53.
Deng
,
H.
,
Wang
,
D.
,
Wang
,
R.
,
Xie
,
X.
,
Yin
,
Y.
,
Du
,
Q.
, and
Jiao
,
K.
,
2016
, “
Effect of Electrode Design and Operating Condition on Performance of Hydrogen Alkaline Membrane Fuel Cell
,”
Appl. Energy
,
183
, pp.
1272
1278
.
54.
Fukuta
,
K.
,
2011
, “
Electrolyte Materials for AMFCs Electrolyte Materials for AMFCs and AMFC Performance
,” https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/amfc_050811_fukuta.pdf
55.
López-Fernández
,
E.
,
Sacedón
,
C. G.
,
Gil-Rostra
,
J.
,
Yubero
,
F.
,
González-Elipe
,
A. R.
, and
de Lucas-Consuegra
,
A.
,
2021
, “
Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing
,”
Molecules
,
26
(
21
), p.
6326
.
56.
Udell
,
K. S.
,
1985
, “
Heat Transfer in Porous Media Considering Phase Change and Capillarity—The Heat Pipe Effect
,”
Int. J. Heat Mass Transfer
,
28
(
2
), pp.
485
495
.
57.
Dullien
,
F. A.
,
1979
,
Porous Media: Fluid Transport and Pore Structure
,
Academic Press
,
New York
.
58.
Leverett
,
M. C.
,
1941
, “
Capillary Behavior in Porous Solids
,”
Trans. AIME
,
142
(
1
), pp.
152
169
.
59.
Udell
,
K.
,
1985
, “
Heat Transfer in Porous Media Considering Phase Change and Capillarity—The Heat Pipe Effect
,”
Int. J. Heat Mass Transfer
,
28
(
2
), pp.
485
495
.
60.
Das
,
P. K.
,
Li
,
X.
, and
Liu
,
Z. S.
,
2010
, “
Analysis of Liquid Water Transport in Cathode Catalyst Layer of PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
6
), pp.
2403
2416
.
61.
Kumbur
,
E.
,
Sharp
,
K.
, and
Mench
,
M. M.
,
2007
, “
Validated Leverett Approach for Multiphase Flow in PEFC Diffusion Media
,”
J. Electrochem. Soc.
,
154
(
12
), pp.
B1295
B1304
.
62.
Das
,
P. K.
,
Grippin
,
A.
,
Kwong
,
A.
, and
Weber
,
A. Z.
,
2012
, “
Liquid-Water-Droplet Adhesion-Force Measurements on Fresh and Aged Fuel-Cell Gas-Diffusion Layers
,”
J. Electrochem. Soc.
,
159
(
5
), pp.
B489
B496
.
63.
Das
,
P. K.
,
Li
,
X.
, and
Liu
,
Z. S.
,
2010
, “
Effective Transport Coefficients in PEM Fuel Cell Catalyst and Gas Diffusion Layers: Beyond Bruggeman Approximation
,”
Appl. Energy
,
87
(
9
), pp.
2785
2796
.
64.
Bird
,
R. B.
,
2002
, “
Transport Phenomena
,”
ASME Appl. Mech. Rev.
,
55
(
1
), pp.
R1
R4
.
65.
Rheinländer
,
P. J.
,
Herranz
,
J.
,
Durst
,
J.
, and
Gasteiger
,
H. A.
,
2014
, “
Kinetics of the Hydrogen Oxidation/Evolution Reaction on Polycrystalline Platinum in Alkaline Electrolyte Reaction Order With Respect to Hydrogen Pressure
,”
J. Electrochem. Soc.
,
161
(
14
), pp.
F1448
F1457
.
66.
Bard
,
A. J.
,
Faulkner
,
L. R.
, and
White
,
H. S.
,
2022
,
Electrochemical Methods: Fundamentals and Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
67.
Jiao
,
K.
,
He
,
P.
,
Du
,
Q.
, and
Yin
,
Y.
,
2014
, “
Three-Dimensional Multiphase Modeling of Alkaline Anion Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
39
(
11
), pp.
5981
5995
.
68.
O'hayre
,
R.
,
Cha
,
S.-W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2016
,
Fuel Cell Fundamentals
,
John Wiley & Sons
,
New Jersey, USA
.
69.
Agar
,
E.
,
Dennison
,
C.
,
Knehr
,
K.
, and
Kumbur
,
E.
,
2013
, “
Identification of Performance Limiting Electrode Using Asymmetric Cell Configuration in Vanadium Redox Flow Batteries
,”
J. Power Sources
,
225
, pp.
89
94
.
70.
Gerhardt
,
M. R.
,
Pant
,
L. M.
, and
Weber
,
A. Z.
,
2019
, “
Along-the-Channel Impacts of Water Management and Carbon-Dioxide Contamination in Hydroxide-Exchange-Membrane Fuel Cells: A Modeling Study
,”
J. Electrochem. Soc.
,
166
(
7
), pp.
F3180
F3192
.
71.
Shah
,
A.
,
Ralph
,
T.
, and
Walsh
,
F.
,
2009
, “
Modeling and Simulation of the Degradation of Perfluorinated Ion-Exchange Membranes in PEM Fuel Cells
,”
J. Electrochem. Soc.
,
156
(
4
), pp.
B465
B484
.
72.
Han
,
X.
,
Chadderdon
,
D. J.
,
Qi
,
J.
,
Xin
,
L.
,
Li
,
W.
, and
Zhou
,
W.
,
2014
, “
Numerical Analysis of Anion-Exchange Membrane Direct Glycerol Fuel Cells Under Steady State and Dynamic Operations
,”
Int. J. Hydrogen Energy
,
39
(
34
), pp.
19767
19779
.
73.
Schmidt
,
T.
,
Stamenkovic
,
V.
,
Arenz
,
M.
,
Markovic
,
N.
, and
Ross Jr
,
P.
,
2002
, “
Oxygen Electrocatalysis in Alkaline Electrolyte: Pt (hkl), Au (hkl) and the Effect of Pd-Modification
,”
Electrochim. Acta
,
47
(
22–23
), pp.
3765
3776
.
74.
Marr
,
C.
, and
Li
,
X.
,
1997
, “
An Engineering Model of Proton Exchange Membrane Fuel Cell Performance
,”
ARI
,
50
(
4
), pp.
190
200
.
75.
Duan
,
Q.
,
Ge
,
S.
, and
Wang
,
C. Y.
,
2013
, “
Water Uptake, Ionic Conductivity and Swelling Properties of Anion-Exchange Membrane
,”
J. Power Sources
,
243
, pp.
773
778
.
76.
Shiau
,
H.-S.
,
Zenyuk
,
I. V.
, and
Weber
,
A. Z.
,
2017
, “
Elucidating Performance Limitations in Alkaline-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3583
E3591
.
77.
Huo
,
S.
,
Deng
,
H.
,
Chang
,
Y.
, and
Jiao
,
K.
,
2012
, “
Water Management in Alkaline Anion Exchange Membrane Fuel Cell Anode
,”
Int. J. Hydrogen Energy
,
37
(
23
), pp.
18389
18402
.
78.
Deng
,
H.
,
Huo
,
S.
,
Chang
,
Y. F.
,
Zhou
,
Y. B.
, and
Jiao
,
K.
,
2013
, “
Transient Analysis of Alkaline Anion Exchange Membrane Fuel Cell Anode
,”
Int. J. Hydrogen Energy
,
38
(
15
), pp.
6509
6525
.
79.
Das
,
P. K.
,
Li
,
X.
, and
Liu
,
Z. S.
,
2007
, “
Analytical Approach to Polymer Electrolyte Membrane Fuel Cell Performance and Optimization
,”
J. Electroanal. Chem.
,
604
(
2
), pp.
72
90
.
80.
Gerhardt
,
M. R.
,
Pant
,
L. M.
,
Shiau
,
H. S.
, and
Weber
,
A. Z.
,
2018
, “
Modeling Water Management and Carbon-Dioxide Contamination Effects in Anion-Exchange Membrane Fuel Cells
,”
ECS Trans.
,
86
(
13
), pp.
15
24
.
You do not currently have access to this content.