Abstract

The detection sensitivity of synchrotron-based X-ray techniques has been largely improved due to the ever-increasing source brightness, which has significantly advanced ex situ and in situ research for energy materials such as lithium-ion batteries. However, the strong beam–material interaction arising from the high beam flux can substantially modify the material structure. The beam-induced parasitic effect inevitably interferes with the intrinsic material property, making the interpretation of the experimental results difficult and requiring comprehensive assessments. Here, we present a quantitative study of the beam effect on an electrode material Ag2VO2PO4 using four different X-ray characterization methods with different radiation dose rates. The material system exhibits interesting and reversible radiation-induced thermal and chemical reactions, further evaluated under electron microscopy to illustrate the underlying mechanism. The work will provide a guideline for using synchrotron X-rays to distinguish the intrinsic behavior from extrinsic structure change of materials induced by X-rays.

References

1.
Courtney
,
I. A.
, and
Dahn
,
J. R.
,
1997
, “
Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium With Tin Oxide Composites
,”
J. Electrochem. Soc.
,
144
(
6
), pp.
2045
2052
.
2.
Orikasa
,
Y.
,
Maeda
,
T.
,
Koyama
,
Y.
,
Minato
,
T.
,
Murayama
,
H.
,
Fukuda
,
K.
,
Tanida
,
H.
, et al
,
2013
, “
Phase Transition Analysis Between LiFePO4 and FePO4 by In-Situ Time-Resolved X-Ray Absorption and X-Ray Diffraction
,”
J. Electrochem. Soc.
,
160
(
5
), pp.
A3061
A3065
.
3.
Chueh
,
W. C.
,
El Gabaly
,
F.
,
Sugar
,
J. D.
,
Bartelt
,
N. C.
,
McDaniel
,
A. H.
,
Fenton
,
K. R.
,
Zavadil
,
K. R.
,
Tyliszczak
,
T.
,
Lai
,
W.
, and
McCarty
,
K. F.
,
2013
, “
Intercalation Pathway in Many-Particle LiFePO4 Electrode Revealed by Nanoscale State-of-Charge Mapping
,”
Nano Lett.
,
13
(
3
), pp.
866
872
.
4.
Kubobuchi
,
K.
,
Mogi
,
M.
,
Ikeno
,
H.
,
Tanaka
,
I.
,
Imai
,
H.
, and
Mizoguchi
,
T.
,
2014
, “
Mn L2,L3-Edge X-Ray Absorption Spectroscopic Studies on Charge–Discharge Mechanism of Li2MnO3
,”
Appl. Phys. Lett.
,
104
(
5
), p.
053906
.
5.
Hy
,
S.
,
Cheng
,
J. H.
,
Liu
,
J. Y.
,
Pan
,
C. J.
,
Rick
,
J.
,
Lee
,
J. F.
,
Chen
,
J. M.
, and
Hwang
,
B. J.
,
2014
, “
Understanding the Role of Ni in Stabilizing the Lithium-Rich High-Capacity Cathode Material Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0<=x<=0.5)
,”
Chem. Mater.
,
26
(
24
), pp.
6919
6927
.
6.
Lee
,
E. S.
,
Nam
,
K. W.
,
Hu
,
E. Y.
, and
Manthiram
,
A.
,
2012
, “
Influence of Cation Ordering and Lattice Distortion on the Charge–Discharge Behavior of LiMn1.5Ni0.5O4 Spinel Between 5.0 and 2.0 V
,”
Chem. Mater.
,
24
(
18
), pp.
3610
3620
.
7.
Zhou
,
Y. N.
,
Ma
,
J.
,
Hu
,
E. Y.
,
Yu
,
X. Q.
,
Gu
,
L.
,
Nam
,
K. W.
,
Chen
,
L. Q.
,
Wang
,
Z. X.
, and
Yang
,
X. Q.
,
2014
, “
Tuning Charge–Discharge Induced Unit Cell Breathing in Layer-Structured Cathode Materials for Lithium-Ion Batteries
,”
Nat. Commun.
,
5
(
1
), p.
5381
.
8.
Andersson
,
A. S.
, and
Thomas
,
J. O.
,
2001
, “
The Source of First-Cycle Capacity Loss in LiFePO4
,”
J. Power Sources
,
97–98
, pp.
498
502
.
9.
Lin
,
F.
,
Markus
,
I. M.
,
Nordlund
,
D.
,
Weng
,
T. C.
,
Asta
,
M. D.
,
Xin
,
H. L. L.
, and
Doeff
,
M. M.
,
2014
, “
Surface Reconstruction and Chemical Evolution of Stoichiometric Layered Cathode Materials for Lithium-Ion Batteries
,”
Nat. Commun.
,
5
(
1
), p.
3529
.
10.
Sathiya
,
M.
,
Abakumov
,
A. M.
,
Foix
,
D.
,
Rousse
,
G.
,
Ramesha
,
K.
,
Saubanere
,
M.
,
Doublet
,
M. L.
, et al
,
2015
, “
Origin of Voltage Decay in High-Capacity Layered Oxide Electrodes
,”
Nat. Mater.
,
14
(
2
), pp.
230
238
.
11.
Wang
,
J. J.
,
Chen-Wiegart
,
Y. C. K.
, and
Wang
,
J.
,
2014
, “
In Operando Tracking Phase Transformation Evolution of Lithium Iron Phosphate With Hard X-Ray Microscopy
,”
Nat. Commun.
,
5
(
1
), p.
4570
.
12.
Wang
,
J. J.
,
Chen-Wiegart
,
Y. C. K.
, and
Wang
,
J.
,
2013
, “
In Situ Chemical Mapping of a Lithium-Ion Battery Using Full-Field Hard X-Ray Spectroscopic Imaging
,”
Chem. Commun.
,
49
(
58
), pp.
6480
6482
.
13.
Meirer
,
F.
,
Cabana
,
J.
,
Liu
,
Y. J.
,
Mehta
,
A.
,
Andrews
,
J. C.
, and
Pianetta
,
P.
,
2011
, “
Three-Dimensional Imaging of Chemical Phase Transformations at the Nanoscale With Full-Field Transmission X-Ray Microscopy
,”
J. Synchrotron. Radiat.
,
18
(
5
), pp.
773
781
.
14.
Wang
,
J. J.
,
Chen-Wiegart
,
Y. C. K.
, and
Wang
,
J.
,
2014
, “
In Situ Three-Dimensional Synchrotron X-Ray Nanotomography of the (De)Lithiation Processes in Tin Anodes
,”
Angew. Chem. Int. Ed.
,
53
(
17
), pp.
4460
4464
.
15.
Wang
,
J. J.
,
Eng
,
C.
,
Chen-Wiegart
,
Y. C. K.
, and
Wang
,
J.
,
2015
, “
Probing Three-Dimensional Sodiation-Desodiation Equilibrium in Sodium-Ion Batteries by In Situ Hard X-Ray Nanotomography
,”
Nat. Commun.
,
6
(
1
), p.
7496
.
16.
Qian
,
D. N.
,
Ma
,
C.
,
More
,
K. L.
,
Meng
,
Y. S.
, and
Chi
,
M. F.
,
2015
, “
Advanced Analytical Electron Microscopy for Lithium-Ion Batteries
,”
NPG Asia Mater.
,
7
(
6
), p.
e193
.
17.
Mesu
,
J. G.
,
Beale
,
A. M.
,
de Groot
,
F. M. F.
, and
Weckhuysen
,
B. M.
,
2006
, “
Probing the Influence of X-Rays on Aqueous Copper Solutions Using Time-Resolved in Situ Combined Video/X-Ray Absorption Near-Edge/Ultraviolet-Visible Spectroscopy
,”
J. Phys. Chem. B
,
110
(
35
), pp.
17671
17677
.
18.
Le Caer
,
S.
,
2011
, “
Water Radiolysis: Influence of Oxide Surfaces on H2 Production Under Ionizing Radiation
,”
Water
,
3
(
1
), pp.
235
253
. doi.org/10.3390/w3010235
19.
Griscom
,
D. L.
,
1985
, “
Diffusion of Radiolytic Molecular-Hydrogen as a Mechanism for the Post-Irradiation Buildup of Interface States in SiO2-on-Si Structures
,”
J. Appl. Phys.
,
58
(
7
), pp.
2524
2533
.
20.
Chen
,
H. M.
,
Wang
,
G. D.
,
Chuang
,
Y. J.
,
Zhen
,
Z. P.
,
Chen
,
X. Y.
,
Biddinger
,
P.
,
Hao
,
Z. L.
, et al
,
2015
, “
Nanoscintillator-Mediated X-Ray Inducible Photodynamic Therapy for In Vivo Cancer Treatment
,”
Nano Lett.
,
15
(
4
), pp.
2249
2256
.
21.
Mcconnell
,
H. M.
,
Heller
,
C.
,
Cole
,
T.
, and
Fessenden
,
R. W.
,
1960
, “
Radiation Damage in Organic Crystals. I. CH(COOH)2 in Malonic Acid
,”
J. Am. Chem. Soc.
,
82
(
4
), pp.
766
775
.
22.
Berclaz
,
T.
,
Bernardinelli
,
G.
,
Celalyanberthier
,
A.
, and
Geoffroy
,
M.
,
1988
, “
Radiation Damage in Organic Phosphates. Crystal Structure of 3-O-Diphenoxyphosphoryl-1,2-O-Isopropylidene 5-O-Trityl-Alpha-D-Ribofuranose and an Electron Spin Resonance Study of the X-Irradiated Single-Crystal
,”
J. Chem. Soc. Faraday Trans. 1 F
,
84
(
11
), pp.
4105
4113
.
23.
Egerton
,
R. F.
,
Li
,
P.
, and
Malac
,
M.
,
2004
, “
Radiation Damage in the TEM and SEM
,”
Micron
,
35
(
6
), pp.
399
409
.
24.
Kiryukhin
,
V.
,
Casa
,
D.
,
Hill
,
J. P.
,
Keimer
,
B.
,
Vigliante
,
A.
,
Tomioka
,
Y.
, and
Tokura
,
Y.
,
1997
, “
An X-Ray-Induced Insulator-Metal Transition in a Magnetoresistive Manganite
,”
Nature
,
386
(
6627
), pp.
813
815
.
25.
Qiao
,
R. M.
,
Chuang
,
Y. D.
,
Yan
,
S. S.
, and
Yang
,
W. L.
,
2012
, “
Soft X-Ray Irradiation Effects of Li2O2, Li2CO3 and Li2O Revealed by Absorption Spectroscopy
,”
PLoS One
,
7
(
11
), p.
e49182
.
26.
Nelson
,
J.
,
Yang
,
Y.
,
Misra
,
S.
,
Andrews
,
J. C.
,
Cui
,
Y.
, and
Toney
,
M. F.
,
2013
, “
Identifying and Managing Radiation Damage During In Situ Transmission X-Ray Microscopy of Li-Ion Batteries
,”
Proceedings of SPIE, X-Ray Nanoimaging: Instruments and Methods
,
San Diego, CA
, Vol. 8851, p. 88510B.
27.
Lin
,
F.
,
Markus
,
I. M.
,
Doeff
,
M. M.
, and
Xin
,
H. L. L.
,
2014
, “
Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials Under Electron Beam
,”
Sci. Rep.
,
4
(
1
), p.
5694
.
28.
Kang
,
H. Y.
,
Wang
,
S. L.
,
Tsai
,
P. P.
, and
Lii
,
K. H.
,
1993
, “
Hydrothermal Synthesis, Crystal-Structure and Ionic-Conductivity of Ag2VO2PO4—A New Layered Phosphate of Vanadium(V)
,”
J. Chem. Soc. Dalton Trans.
,
10
(
1
), pp.
1525
1528
.
29.
Yan
,
H. F.
,
Bouet
,
N.
,
Zhou
,
J.
,
Huang
,
X. J.
,
Nazaretski
,
E.
,
Xu
,
W. H.
,
Cocco
,
A. P.
,
Chiu
,
W. K. S.
,
Brinkman
,
K. S.
, and
Chu
,
Y. S.
,
2018
, “
Multimodal Hard X-Ray Imaging With Resolution Approaching 10 nm for Studies in Material Science
,”
Nano Futures
,
2
(
1
), p.
011001
.
30.
Victor
,
T. W.
,
Easthon
,
L. M.
,
Ge
,
M.
,
O’Toole
,
K. H.
,
Smith
,
R. J.
,
Huang
,
X.
,
Yan
,
H.
,
Allen
,
K. N.
,
Chu
,
Y. S.
, and
Miller
,
L. M.
,
2018
, “
X-Ray Fluorescence Nanotomography of Single Bacteria With a Sub-15 nm Beam
,”
Sci. Rep.
,
8
(
1
), p.
13415
.
31.
Huang
,
Z. F.
,
Bartels
,
M.
,
Xu
,
R.
,
Osterhoff
,
M.
,
Kalbfleisch
,
S.
,
Sprung
,
M.
,
Suzuki
,
A.
, et al
,
2015
, “
Grain Rotation and Lattice Deformation During Photoinduced Chemical Reactions Revealed by In Situ X-Ray Nanodiffraction
,”
Nat. Mater.
,
14
(
7
), pp.
691
695
.
32.
Nazaretski
,
E.
,
Lauer
,
K.
,
Yan
,
H.
,
Bouet
,
N.
,
Zhou
,
J.
,
Conley
,
R.
,
Huang
,
X.
, et al
,
2015
, “
Pushing the Limits: An Instrument for Hard X-Ray Imaging Below 20 nm
,”
J. Synchrotron. Radiat.
,
22
(
2
), pp.
336
341
.
33.
Chu
,
Y. S.
,
Yi
,
J. M.
,
De Carlo
,
F.
,
Shen
,
Q.
,
Lee
,
W. K.
,
Wu
,
H. J.
,
Wang
,
C. L.
, et al
,
2008
, “
Hard X-Ray Microscopy With Fresnel Zone Plates Reaches 40 nm Rayleigh Resolution
,”
Appl. Phys. Lett.
,
92
(
10
), p.
103119
.
34.
Wu
,
M. H.
,
Liu
,
N.
,
Xu
,
G.
,
Ma
,
J.
,
Tang
,
L. A.
,
Wang
,
L. A.
, and
Fu
,
H. Y.
,
2011
, “
Kinetics and Mechanisms Studies on Dimethyl Phthalate Degradation in Aqueous Solutions by Pulse Radiolysis and Electron Beam Radiolysis
,”
Radiat. Phys. Chem.
,
80
(
3
), pp.
420
425
.
35.
Montet
,
G. L.
, and
Myers
,
G. E.
,
1971
, “
Threshold Energy for the Displacement of Surface Atoms in Graphite
,”
Carbon
,
9
(
2
), pp.
179
183
.
36.
Andersen
,
H. H.
,
1979
, “
The Depth Resolution of Sputter Profile
,”
Appl. Phys.
,
18
(
2
), pp.
131
140
.
You do not currently have access to this content.