Abstract

Designing a new heterostructure electrode has many challenges associated with interface engineering. Demanding simulation resources and lack of heterostructure databases continue to be a barrier to understanding the chemistry and mechanics of complex interfaces using simulations. Mixed-dimensional heterostructures composed of two-dimensional (2D) and three-dimensional (3D) materials are undisputed next-generation materials for engineered devices due to their changeable properties. The present work computationally investigates the interface between 2D graphene and 3D tin (Sn) systems with density functional theory (DFT) method. This computationally demanding simulation data is further used to develop machine learning (ML)-based potential energy surfaces (PES). The approach to developing PES for complex interface systems in the light of limited data and the transferability of such models has been discussed. To develop PES for graphene-tin interface systems, high-dimensional neural networks (HDNN) are used that rely on atom-centered symmetry function to represent structural information. HDNN are modified to train on the total energies of the interface system rather than atomic energies. The performance of modified HDNN trained on 5789 interface structures of graphene|Sn is tested on new interfaces of the same material pair with varying levels of structural deviations from the training dataset. Root-mean-squared error (RMSE) for test interfaces fall in the range of 0.01–0.45 eV/atom, depending on the structural deviations from the reference training dataset. By avoiding incorrect decomposition of total energy into atomic energies, modified HDNN model is shown to obtain higher accuracy and transferability despite a limited dataset. Improved accuracy in the ML-based modeling approach promises cost-effective means of designing interfaces in heterostructure energy storage systems with higher cycle life and stability.

References

1.
Abdullahi
,
H.
,
Burcham
,
C. L.
, and
Vetter
,
T.
,
2020
, “
A Mechanistic Model to Predict Droplet Drying History and Particle Shell Formation in Multicomponent Systems
,”
Chem. Eng. Sci.
,
224
, p.
115713
.
2.
Chatterjee
,
K.
,
Sarkar
,
S.
,
Rao
,
K. J.
, and
Paria
,
S.
,
2014
, “
Core/Shell Nanoparticles in Biomedical Applications
,”
Adv. Colloid Interface Sci.
,
209
, pp.
8
39
.
3.
Wei
,
S.
,
Wang
,
Q.
,
Zhu
,
J.
,
Sun
,
L.
,
Lin
,
H.
, and
Guo
,
Z.
,
2011
, “
Multifunctional Composite Core–Shell Nanoparticles
,”
Nanoscale
,
3
(
11
), pp.
4474
4502
.
4.
Yan
,
D.
, and
Wei
,
M.
,
2015
,
Photofunctional Layered Materials
,
Springer
,
New York
.
5.
Di
,
J.
,
Xia
,
J.
,
Li
,
H.
,
Guo
,
S.
, and
Dai
,
S.
,
2017
, “
Bismuth Oxyhalide Layered Materials for Energy and Environmental Applications
,”
Nano Energy
,
41
, pp.
172
192
.
6.
Alanazi
,
A.
,
Nojiri
,
C.
,
Kido
,
T.
,
Noguchi
,
J.
,
Ohgoe
,
Y.
,
Matsuda
,
T.
,
Hirakuri
,
K.
,
Funakubo
,
A.
,
Sakai
,
K.
, and
Fukui
,
Y.
,
2000
, “
Engineering Analysis of Diamond-Like Carbon Coated Polymeric Materials for Biomedical Applications
,”
Artif. Organs
,
24
(
8
), pp.
624
627
.
7.
Bae
,
S.-H.
,
Kum
,
H.
,
Kong
,
W.
,
Kim
,
Y.
,
Choi
,
C.
,
Lee
,
B.
,
Lin
,
P.
,
Park
,
Y.
, and
Kim
,
J.
,
2019
, “
Integration of Bulk Materials With Two-Dimensional Materials for Physical Coupling and Applications
,”
Nat. Mater.
,
18
(
6
), pp.
550
560
.
8.
Schulman
,
D. S.
,
Arnold
,
A. J.
, and
Das
,
S.
,
2018
, “
Contact Engineering for 2D Materials and Devices
,”
Chem. Soc. Rev.
,
47
(
9
), pp.
3037
3058
.
9.
Oakes
,
L.
,
Carter
,
R.
,
Hanken
,
T.
,
Cohn
,
A. P.
,
Share
,
K.
,
Schmidt
,
B.
, and
Pint
,
C. L.
,
2016
, “
Interface Strain in Vertically Stacked Two-Dimensional Heterostructured Carbon-MoS2 Nanosheets Controls Electrochemical Reactivity
,”
Nat. Commun.
,
7
(
1
), pp.
1
7
.
10.
Chen
,
K.-S.
,
Balla
,
I.
,
Luu
,
N. S.
, and
Hersam
,
M. C.
,
2017
, “
Emerging Opportunities for Two-Dimensional Materials in Lithium-Ion Batteries
,”
ACS Energy Lett.
,
2
(
9
), pp.
2026
2034
.
11.
Hu
,
Z.
,
Liu
,
Q.
,
Chou
,
S.-L.
, and
Dou
,
S.-X.
,
2021
, “
Two-Dimensional Material-Based Heterostructures for Rechargeable Batteries
,”
Cell Rep. Phys. Sci.
,
2
(
1
), p.
100286
.
12.
Novoselov
,
K. S.
,
Jiang
,
D.
,
Schedin
,
F.
,
Booth
,
T.
,
Khotkevich
,
V.
,
Morozov
,
S.
, and
Geim
,
A. K.
,
2005
, “
Two-Dimensional Atomic Crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
,
102
(
30
), pp.
10451
10453
.
13.
Hong
,
H.
,
Liu
,
C.
,
Cao
,
T.
,
Jin
,
C.
,
Wang
,
S.
,
Wang
,
F.
, and
Liu
,
K.
,
2017
, “
Interfacial Engineering of van der Waals Coupled 2D Layered Materials
,”
Adv. Mater. Interfaces
,
4
(
9
), p.
1601054
.
14.
Zhang
,
Q.
,
Fiori
,
G.
, and
Iannaccone
,
G.
,
2014
, “
On Transport in Vertical Graphene Heterostructures
,”
IEEE Electron Device Lett.
,
35
(
9
), pp.
966
968
.
15.
Huang
,
B.
,
Xiang
,
H.
,
Yu
,
J.
, and
Wei
,
S.-H.
,
2012
, “
Effective Control of the Charge and Magnetic States of Transition-Metal Atoms on Single-Layer Boron Nitride
,”
Phys. Rev. Lett.
,
108
(
20
), p.
206802
.
16.
Konstantatos
,
G.
,
Badioli
,
M.
,
Gaudreau
,
L.
,
Osmond
,
J.
,
Bernechea
,
M.
,
De Arquer
,
F. P. G.
,
Gatti
,
F.
, and
Koppens
,
F. H.
,
2012
, “
Hybrid Graphene–Quantum Dot Phototransistors With Ultrahigh Gain
,”
Nat. Nanotechnol.
,
7
(
6
), pp.
363
368
.
17.
Al Balushi
,
Z. Y.
,
Wang
,
K.
,
Ghosh
,
R. K.
,
Vilá
,
R. A.
,
Eichfeld
,
S. M.
,
Caldwell
,
J. D.
,
Qin
,
X.
,
Lin
,
Y.-C.
,
DeSario
,
P. A.
, and
Stone
,
G.
,
2016
, “
Two-Dimensional Gallium Nitride Realized via Graphene Encapsulation
,”
Nat. Mater.
,
15
(
11
), pp.
1166
1171
.
18.
Journot
,
T.
,
Bouchiat
,
V.
,
Gayral
,
B.
,
Dijon
,
J.
, and
Hyot
,
B.
,
2018
, “
Self-Assembled UV Photodetector Made by Direct Epitaxial GaN Growth on Graphene
,”
ACS Appl. Mater. Interfaces
,
10
(
22
), pp.
18857
18862
.
19.
Dutta
,
M.
,
Sarkar
,
S.
,
Ghosh
,
T.
, and
Basak
,
D.
,
2012
, “
ZnO/Graphene Quantum Dot Solid-State Solar Cell
,”
J. Phys. Chem. C
,
116
(
38
), pp.
20127
20131
.
20.
Sun
,
S.
,
Gao
,
L.
, and
Liu
,
Y.
,
2010
, “
Enhanced Dye-Sensitized Solar Cell Using Graphene-TiO 2 Photoanode Prepared by Heterogeneous Coagulation
,”
Appl. Phys. Lett.
,
96
(
8
), p.
083113
.
21.
Chou
,
C.-Y.
, and
Hwang
,
G. S.
,
2013
, “
Role of Interface in the Lithiation of Silicon-Graphene Composites: A First Principles Study
,”
J. Phys. Chem. C
,
117
(
19
), pp.
9598
9604
.
22.
Chou
,
S.-L.
,
Wang
,
J.-Z.
,
Choucair
,
M.
,
Liu
,
H.-K.
,
Stride
,
J. A.
, and
Dou
,
S.-X.
,
2010
, “
Enhanced Reversible Lithium Storage in a Nanosize Silicon/Graphene Composite
,”
Electrochem. Commun.
,
12
(
2
), pp.
303
306
.
23.
Li
,
Y.
,
Huang
,
S.
,
Wei
,
C.
,
Zhou
,
D.
,
Li
,
B.
,
Wu
,
C.
, and
Mochalin
,
V. N.
,
2021
, “
Adhesion Between MXenes and Other 2D Materials
,”
ACS Appl. Mater. Interfaces
,
13
(
3
), pp.
4682
4691
.
24.
Sharma
,
V.
,
Mitlin
,
D.
, and
Datta
,
D.
,
2021
, “
Understanding the Strength of the Selenium–Graphene Interfaces for Energy Storage Systems
,”
Langmuir
,
37
(
6
), pp.
2029
2039
.
25.
Khomyakov
,
P.
,
Giovannetti
,
G.
,
Rusu
,
P.
,
Brocks
,
G. V.
,
Van den Brink
,
J.
, and
Kelly
,
P. J.
,
2009
, “
First-Principles Study of the Interaction and Charge Transfer Between Graphene and Metals
,”
Phys. Rev. B
,
79
(
19
), p.
195425
.
26.
Behler
,
J.
,
2011
, “
Atom-Centered Symmetry Functions for Constructing High-Dimensional Neural Network Potentials
,”
J. Chem. Phys.
,
134
(
7
), p.
074106
.
27.
Zuo
,
Y.
,
Chen
,
C.
,
Li
,
X.
,
Deng
,
Z.
,
Chen
,
Y.
,
Behler
,
J. R.
,
Csányi
,
G.
,
Shapeev
,
A. V.
,
Thompson
,
A. P.
, and
Wood
,
M. A.
,
2020
, “
Performance and Cost Assessment of Machine Learning Interatomic Potentials
,”
J. Phys. Chem. A
,
124
(
4
), pp.
731
745
.
28.
Thompson
,
A. P.
,
Swiler
,
L. P.
,
Trott
,
C. R.
,
Foiles
,
S. M.
, and
Tucker
,
G. J.
,
2015
, “
Spectral Neighbor Analysis Method for Automated Generation of Quantum-Accurate Interatomic Potentials
,”
J. Comput. Phys.
,
285
, pp.
316
330
.
29.
Shapeev
,
A. V.
,
2016
, “
Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials
,”
Multiscale Model. Simul.
,
14
(
3
), pp.
1153
1173
.
30.
Bartók
,
A. P.
,
Payne
,
M. C.
,
Kondor
,
R.
, and
Csányi
,
G.
,
2010
, “
Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, Without the Electrons
,”
Phys. Rev. Lett.
,
104
(
13
), p.
136403
.
31.
Fujikake
,
S.
,
Deringer
,
V. L.
,
Lee
,
T. H.
,
Krynski
,
M.
,
Elliott
,
S. R.
, and
Csányi
,
G.
,
2018
, “
Gaussian Approximation Potential Modeling of Lithium Intercalation in Carbon Nanostructures
,”
J. Chem. Phys.
,
148
(
24
), p.
241714
.
32.
Behler
,
J.
, and
Parrinello
,
M.
,
2007
, “
Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
,”
Phys. Rev. Lett.
,
98
(
14
), p.
146401
.
33.
Battaglia
,
P. W.
,
Hamrick
,
J. B.
,
Bapst
,
V.
,
Sanchez-Gonzalez
,
A.
,
Zambaldi
,
V.
,
Malinowski
,
M.
,
Tacchetti
,
A.
,
Raposo
,
D.
,
Santoro
,
A.
, and
Faulkner
,
R.
,
2018
, “
Relational Inductive Biases, Deep Learning, and Graph Networks
,”
arXiv preprint
https://arxiv.org/abs/1806.01261.
34.
Schütt
,
K. T.
,
Kindermans
,
P.-J.
,
Sauceda
,
H. E.
,
Chmiela
,
S.
,
Tkatchenko
,
A.
, and
Müller
,
K.-R.
,
2017
, “
Schnet: A Continuous-Filter Convolutional Neural Network for Modeling Quantum Interactions
,” Adv. Neur. Inform. Pocess. Sys., 30
arXiv preprint
. https://arxiv.org/abs/1706.08566
35.
Yanxon
,
H.
,
Zagaceta
,
D.
,
Wood
,
B. C.
, and
Zhu
,
Q.
,
2020
, “
Neural Network Potential From Bispectrum Components: A Case Study on Crystalline Silicon
,”
J. Chem. Phys.
,
153
(
5
), p.
054118
.
36.
Kondati Natarajan
,
S.
, and
Behler
,
J. R.
,
2017
, “
Self-Diffusion of Surface Defects at Copper–Water Interfaces
,”
J. Phys. Chem. C
,
121
(
8
), pp.
4368
4383
.
37.
Artrith
,
N.
, and
Kolpak
,
A. M.
,
2014
, “
Understanding the Composition and Activity of Electrocatalytic Nanoalloys in Aqueous Solvents: A Combination of DFT and Accurate Neural Network Potentials
,”
Nano Lett.
,
14
(
5
), pp.
2670
2676
.
38.
Behler
,
J.
,
Martoňák
,
R.
,
Donadio
,
D.
, and
Parrinello
,
M.
,
2008
, “
Metadynamics Simulations of the High-Pressure Phases of Silicon Employing a High-Dimensional Neural Network Potential
,”
Phys. Rev. Lett.
,
100
(
18
), p.
185501
.
39.
Zhang
,
L.
,
Han
,
J.
,
Wang
,
H.
,
Car
,
R.
, and
Weinan
,
E.
,
2018
, “
Deep Potential Molecular Dynamics: A Scalable Model With the Accuracy of Quantum Mechanics
,”
Phys. Rev. Lett.
,
120
(
14
), p.
143001
.
40.
Smith
,
J. S.
,
Isayev
,
O.
, and
Roitberg
,
A. E.
,
2017
, “
ANI-1: An Extensible Neural Network Potential With DFT Accuracy at Force Field Computational Cost
,”
Chem. Sci.
,
8
(
4
), pp.
3192
3203
.
41.
Schütt
,
K. T.
,
Arbabzadah
,
F.
,
Chmiela
,
S.
,
Müller
,
K. R.
, and
Tkatchenko
,
A.
,
2017
, “
Quantum-Chemical Insights From Deep Tensor Neural Networks
,”
Nat. Commun.
,
8
(
1
), pp.
1
8
.
42.
Yao
,
K.
,
Herr
,
J. E.
,
Toth
,
D. W.
,
Mckintyre
,
R.
, and
Parkhill
,
J.
,
2018
, “
The TensorMol-0.1 Model Chemistry: A Neural Network Augmented With Long-Range Physics
,”
Chem. Sci.
,
9
(
8
), pp.
2261
2269
.
43.
Yao
,
K.
,
Herr
,
J. E.
,
Brown
,
S. N.
, and
Parkhill
,
J.
,
2017
, “
Intrinsic Bond Energies From a Bonds-in-Molecules Neural Network
,”
J. Phys. Chem. Lett.
,
8
(
12
), pp.
2689
2694
.
44.
Bereau
,
T.
,
Andrienko
,
D.
, and
Von Lilienfeld
,
O. A.
,
2015
, “
Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules
,”
J. Chem. Theory Comput.
,
11
(
7
), pp.
3225
3233
.
45.
Bartók
,
A. P.
,
Kermode
,
J.
,
Bernstein
,
N.
, and
Csányi
,
G.
,
2018
, “
Machine Learning a General-Purpose Interatomic Potential for Silicon
,”
Phys. Rev. X
,
8
(
4
), p.
041048
.
46.
Deringer
,
V. L.
,
Bernstein
,
N.
,
Bartók
,
A. P.
,
Cliffe
,
M. J.
,
Kerber
,
R. N.
,
Marbella
,
L. E.
,
Grey
,
C. P.
,
Elliott
,
S. R.
, and
Csányi
,
G.
,
2018
, “
Realistic Atomistic Structure of Amorphous Silicon From Machine-Learning-Driven Molecular Dynamics
,”
J. Phys. Chem. Lett.
,
9
(
11
), pp.
2879
2885
.
47.
Xu
,
N.
,
Shi
,
Y.
,
He
,
Y.
, and
Shao
,
Q.
,
2020
, “
A Deep-Learning Potential for Crystalline and Amorphous Li–Si Alloys
,”
J. Phys. Chem. C
,
124
(
30
), pp.
16278
16288
.
48.
Andolina
,
C. M.
,
Williamson
,
P.
, and
Saidi
,
W. A.
,
2020
, “
Optimization and Validation of a Deep Learning CuZr Atomistic Potential: Robust Applications for Crystalline and Amorphous Phases With Near-DFT Accuracy
,”
J. Chem. Phys.
,
152
(
15
), p.
154701
.
49.
Tang
,
L.
,
Yang
,
Z.
,
Wen
,
T.
,
Ho
,
K.-M.
,
Kramer
,
M. J.
, and
Wang
,
C.-Z.
,
2020
, “
Development of Interatomic Potential for Al–Tb Alloys Using a Deep Neural Network Learning Method
,”
Phys. Chem. Chem. Phys.
,
22
(
33
), pp.
18467
18479
.
50.
Banjade
,
H. R.
,
Hauri
,
S.
,
Zhang
,
S.
,
Ricci
,
F.
,
Gong
,
W.
,
Hautier
,
G.
,
Vucetic
,
S.
, and
Yan
,
Q.
,
2021
, “
Structure Motif–Centric Learning Framework for Inorganic Crystalline Systems
,”
Sci. Adv.
,
7
(
17
), p.
eabf1754
.
51.
Frey
,
N. C.
,
Akinwande
,
D.
,
Jariwala
,
D.
, and
Shenoy
,
V. B.
,
2020
, “
Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing
,”
ACS Nano
,
14
(
10
), pp.
13406
13417
.
52.
Tanaka
,
K.
,
Hachiya
,
K.
,
Zhang
,
W.
,
Matsuda
,
K.
, and
Miyauchi
,
Y.
,
2019
, “
Machine-Learning Analysis to Predict the Exciton Valley Polarization Landscape of 2D Semiconductors
,”
ACS Nano
,
13
(
11
), pp.
12687
12693
.
53.
Shin
,
Y. J.
,
Shin
,
W.
,
Taniguchi
,
T.
,
Watanabe
,
K.
,
Kim
,
P.
, and
Bae
,
S.-H.
,
2020
, “
Fast and Accurate Robotic Optical Detection of Exfoliated Graphene and Hexagonal Boron Nitride by Deep Neural Networks
,”
2D Mater.
,
8
(
3
), p.
035017
.
54.
Fernández
,
M.
,
Rezaei
,
S.
,
Mianroodi
,
J. R.
,
Fritzen
,
F.
, and
Reese
,
S.
,
2020
, “
Application of Artificial Neural Networks for the Prediction of Interface Mechanics: A Study on Grain Boundary Constitutive Behavior
,”
Adv. Model. Simul. Eng. Sci.
,
7
(
1
), pp.
1
27
.
55.
Behler
,
J. R.
,
2021
, “
Four Generations of High-Dimensional Neural Network Potentials
,”
Chem. Rev.
,
121
, (
16
), pp.
10037
10072
.
56.
Han
,
J.
,
Zhang
,
L.
,
Car
,
R.
, and
Weinan
,
E.
,
2018
, “
Deep Potential: A General Representation of a Many-Body Potential Energy Surface
,”
Commun. Comput. Phys.
,
23
(
3
), pp.
629
639
.
57.
Gastegger
,
M.
,
Schwiedrzik
,
L.
,
Bittermann
,
M.
,
Berzsenyi
,
F.
, and
Marquetand
,
P.
,
2018
, “
wACSF—Weighted Atom-Centered Symmetry Functions as Descriptors in Machine Learning Potentials
,”
J. Chem. Phys.
,
148
(
24
), p.
241709
.
58.
Himanen
,
L.
,
Jäger
,
M. O.
,
Morooka
,
E. V.
,
Canova
,
F. F.
,
Ranawat
,
Y. S.
,
Gao
,
D. Z.
,
Rinke
,
P.
, and
Foster
,
A. S.
,
2020
, “
DScribe: Library of Descriptors for Machine Learning in Materials Science
,”
Comput. Phys. Commun.
,
247
, p.
106949
.
59.
Gao
,
H.
,
Wang
,
J.
, and
Sun
,
J.
,
2019
, “
Improve the Performance of Machine-Learning Potentials by Optimizing Descriptors
,”
J. Chem. Phys.
,
150
(
24
), p.
244110
.
60.
Yanxon
,
H.
,
Zagaceta
,
D.
,
Tang
,
B.
,
Matteson
,
D. S.
, and
Zhu
,
Q.
,
2020
, “
PyXtal_FF: A Python Library for Automated Force Field Generation
,”
Mach. Learn.: Sci. Technol.
,
2
(
2
), p.
027001
.
61.
Ceder
,
G.
, and
Persson
,
K.
The Materials Project: A Materials Genome Approach
,
2010
, DOE Data Explorer, http://www.osti.gov/dataexplorer/biblio/1077798, Accessed August 28, 2016.
62.
Basu
,
S.
,
Suresh
,
S.
,
Ghatak
,
K.
,
Bartolucci
,
S. F.
,
Gupta
,
T.
,
Hundekar
,
P.
,
Kumar
,
R.
,
Lu
,
T.-M.
,
Datta
,
D.
, and
Shi
,
Y.
,
2018
, “
Utilizing van der Waals Slippery Interfaces to Enhance the Electrochemical Stability of Silicon Film Anodes in Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
10
(
16
), pp.
13442
13451
.
63.
Sharma
,
V.
,
Ghatak
,
K.
, and
Datta
,
D.
,
2018
, “
Amorphous Germanium as a Promising Anode Material for Sodium ion Batteries: A First Principle Study
,”
J. Mater. Sci.
,
53
(
20
), pp.
14423
14434
.
64.
Kresse
,
G.
, and
Furthmüller
,
J.
,
1996
, “
Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis set
,”
Phys. Rev. B
,
54
(
16
), pp.
11169
11186
.
65.
Kresse
,
G.
, and
Joubert
,
D.
,
1999
, “
From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method
,”
Phys. Rev. B
,
59
(
3
), pp.
1758
1775
.
66.
Blöchl
,
P. E.
,
1994
, “
Projector Augmented-Wave Method
,”
Phys. Rev. B
,
50
(
24
), pp.
17953
17979
.
67.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
,
1996
, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
,
77
(
18
), pp.
3865
3868
.
68.
Dion
,
M.
,
Rydberg
,
H.
,
Schröder
,
E.
,
Langreth
,
D. C.
, and
Lundqvist
,
B. I.
,
2004
, “
Van der Waals Density Functional for General Geometries
,”
Phys. Rev. Lett.
,
92
(
24
), p.
246401
.
69.
Legrain
,
F.
, and
Manzhos
,
S.
,
2016
, “
Understanding the Difference in Cohesive Energies Between Alpha and Beta Tin in DFT Calculations
,”
AIP Adv.
,
6
(
4
), p.
045116
.
70.
Luo
,
B.
,
Qiu
,
T.
,
Ye
,
D.
,
Wang
,
L.
, and
Zhi
,
L.
,
2016
, “
Tin Nanoparticles Encapsulated in Graphene Backboned Carbonaceous Foams as High-Performance Anodes for Lithium-Ion and Sodium-Ion Storage
,”
Nano Energy
,
22
, pp.
232
240
.
71.
Sanville
,
E.
,
Kenny
,
S. D.
,
Smith
,
R.
, and
Henkelman
,
G.
,
2007
, “
Improved Grid-Based Algorithm for Bader Charge Allocation
,”
J. Comput. Chem.
,
28
(
5
), pp.
899
908
.
72.
Zhang
,
Z.
,
2018
, “
Improved Adam optimizer for Deep Neural Networks
,”
Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)
,
Banff, AB, Canada
,
June 4–6
, IEEE, pp.
1
2
.
73.
Comin
,
M.
, and
Lewis
,
L. J.
,
2019
, “
Deep-Learning Approach to the Structure of Amorphous Silicon
,”
Phys. Rev. B
,
100
(
9
), p.
094107
.
74.
Huang
,
S.-D.
,
Shang
,
C.
,
Kang
,
P.-L.
, and
Liu
,
Z.-P.
,
2018
, “
Atomic Structure of Boron Resolved Using Machine Learning and Global Sampling
,”
Chem. Sci.
,
9
(
46
), pp.
8644
8655
.
75.
Chu
,
S.
, and
Majumdar
,
A.
,
2012
, “
Opportunities and Challenges for a Sustainable Energy Future
,”
Nature
,
488
(
7411
), pp.
294
303
.
76.
Liang
,
B.
,
Liu
,
Y.
, and
Xu
,
Y.
,
2014
, “
Silicon-Based Materials as High Capacity Anodes for Next Generation Lithium Ion Batteries
,”
J. Power Sources
,
267
, pp.
469
490
.
77.
Liu
,
X. H.
,
Zhong
,
L.
,
Huang
,
S.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2012
, “
Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
,”
ACS Nano
,
6
(
2
), pp.
1522
1531
.
78.
Jin
,
Y.
,
Zhu
,
B.
,
Lu
,
Z.
,
Liu
,
N.
, and
Zhu
,
J.
,
2017
, “
Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery
,”
Adv. Energy Mater.
,
7
(
23
), p.
1700715
.
79.
Lee
,
S. W.
,
Ryu
,
I.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2015
, “
Fracture of Crystalline Germanium During Electrochemical Lithium Insertion
,”
Extreme Mech. Lett.
,
2
, pp.
15
19
.
80.
Zhang
,
L.
, and
Gong
,
H.
,
2015
, “
Partial Conversion of Current Collectors Into Nickel Copper Oxide Electrode Materials for High-Performance Energy Storage Devices
,”
ACS Appl. Mater. Interfaces
,
7
(
28
), pp.
15277
15284
.
81.
Jerliu
,
B.
,
Hüger
,
E.
,
Dorrer
,
L.
,
Seidlhofer
,
B.-K.
,
Steitz
,
R.
,
Oberst
,
V.
,
Geckle
,
U.
,
Bruns
,
M.
, and
Schmidt
,
H.
,
2014
, “
Volume Expansion During Lithiation of Amorphous Silicon Thin Film Electrodes Studied by In-Operando Neutron Reflectometry
,”
J. Phys. Chem. C
,
118
(
18
), pp.
9395
9399
.
82.
Ko
,
M.
,
Chae
,
S.
, and
Cho
,
J.
,
2015
, “
Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries
,”
ChemElectroChem
,
2
(
11
), pp.
1645
1651
.
83.
Santimetaneedol
,
A.
,
Tripuraneni
,
R.
,
Chester
,
S. A.
, and
Nadimpalli
,
S. P.
,
2016
, “
Time-Dependent Deformation Behavior of Polyvinylidene Fluoride Binder: Implications on the Mechanics of Composite Electrodes
,”
J. Power Sources
,
332
, pp.
118
128
.
84.
Zeng
,
W.
,
Wang
,
L.
,
Peng
,
X.
,
Liu
,
T.
,
Jiang
,
Y.
,
Qin
,
F.
,
Hu
,
L.
,
Chu
,
P. K.
,
Huo
,
K.
, and
Zhou
,
Y.
,
2018
, “
Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
8
(
11
), p.
1702314
.
85.
Kalnaus
,
S.
,
Rhodes
,
K.
, and
Daniel
,
C.
,
2011
, “
A Study of Lithium Ion Intercalation Induced Fracture of Silicon Particles Used as Anode Material in Li-Ion Battery
,”
J. Power Sources
,
196
(
19
), pp.
8116
8124
.
86.
Fan
,
F.
,
Huang
,
S.
,
Yang
,
H.
,
Raju
,
M.
,
Datta
,
D.
,
Shenoy
,
V. B.
,
Van Duin
,
A. C.
,
Zhang
,
S.
, and
Zhu
,
T.
,
2013
, “
Mechanical Properties of Amorphous LixSi Alloys: A Reactive Force Field Study
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
7
), p.
074002
.
87.
Lee
,
S. W.
,
McDowell
,
M. T.
,
Berla
,
L. A.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2012
, “
Fracture of Crystalline Silicon Nanopillars During Electrochemical Lithium Insertion
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
11
), pp.
4080
4085
.
88.
Shi
,
L.
, and
Zhao
,
T.
,
2017
, “
Recent Advances in Inorganic 2D Materials and Their Applications in Lithium and Sodium Batteries
,”
J. Mater. Chem. A
,
5
(
8
), pp.
3735
3758
.
89.
Dong
,
Y.
,
Wu
,
Z.-S.
,
Ren
,
W.
,
Cheng
,
H.-M.
, and
Bao
,
X.
,
2017
, “
Graphene: A Promising 2D Material for Electrochemical Energy Storage
,”
Sci. Bull.
,
62
(
10
), pp.
724
740
.
90.
Pomerantseva
,
E.
, and
Gogotsi
,
Y.
,
2017
, “
Two-Dimensional Heterostructures for Energy Storage
,”
Nat. Energy
,
2
(
7
), pp.
1
6
.
91.
Zhang
,
C. J.
,
Park
,
S.-H.
,
Seral-Ascaso
,
A.
,
Barwich
,
S.
,
McEvoy
,
N.
,
Boland
,
C. S.
,
Coleman
,
J. N.
,
Gogotsi
,
Y.
, and
Nicolosi
,
V.
,
2019
, “
High Capacity Silicon Anodes Enabled by MXene Viscous Aqueous Ink
,”
Nat. Commun.
,
10
(
1
), pp.
1
9
.
92.
Wang
,
C.-H.
,
Kurra
,
N.
,
Alhabeb
,
M.
,
Chang
,
J.-K.
,
Alshareef
,
H. N.
, and
Gogotsi
,
Y.
,
2018
, “
Titanium Carbide (MXene) as a Current Collector for Lithium-Ion Batteries
,”
ACS Omega
,
3
(
10
), pp.
12489
12494
.
93.
Sharma
,
V.
, and
Datta
,
D.
,
2021
, “
Variation in the Interface Strength of Silicon With Surface Engineered Ti 3 C 2 MXenes
,”
Phys. Chem. Chem. Phys.
,
23
(
9
), pp.
5540
5550
.
94.
Raccichini
,
R.
,
Varzi
,
A.
,
Passerini
,
S.
, and
Scrosati
,
B.
,
2015
, “
The Role of Graphene for Electrochemical Energy Storage
,”
Nat. Mater.
,
14
(
3
), pp.
271
279
.
95.
Zhao
,
K.
, and
Cui
,
Y.
,
2016
, “
Understanding the Role of Mechanics in Energy Materials: A Perspective
,”
Extreme Mech. Lett.
,
9
, pp.
347
352
.
96.
McMeeking
,
R. M.
, and
Purkayastha
,
R.
,
2014
, “
The Role of Solid Mechanics in Electrochemical Energy Systems Such as Lithium-Ion Batteries
,”
Procedia IUTAM
,
10
, pp.
294
306
.
97.
Butler
,
S. Z.
,
Hollen
,
S. M.
,
Cao
,
L.
,
Cui
,
Y.
,
Gupta
,
J. A.
,
Gutiérrez
,
H. R.
,
Heinz
,
T. F.
,
Hong
,
S. S.
,
Huang
,
J.
, and
Ismach
,
A. F.
,
2013
, “
Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene
,”
ACS Nano
,
7
(
4
), pp.
2898
2926
.
You do not currently have access to this content.