Abstract

Battery Thermal Management System (BTMS) is crucial to maintain peak temperature and temperature difference of lithium-ion battery pack in appropriate range, thus ensuring best performance, extended cycle life and safety. Liquid cooling BTMS is extensively researched for prismatic cells, but only a few studies are present on application of liquid cooling BTMS for cylindrical cells. Further, existing studies on liquid cooling for cylindrical cells majorly focus on effect of flowrate, flow direction, and number of channels. In this study, a novel mini-channel cooling plate-based liquid cooling BTMS is proposed for a battery pack of 20 cells. Computational fluid dynamics (CFD)-based numerical analysis was performed on three-dimensional model of battery pack to investigate effects of parameters associated with cooling plate and mini-channel design, flow characteristics, and battery arrangement on temperature uniformity, heat removal rate, parasitic power consumption and weight of the battery pack. The study concluded that installation of aluminum cylindrical enclosure on cells could drastically enhance heat removal and temperature uniformity. Altering flow directions in mini-channel could enhance thermal performance. The research demonstrated that for case 2d (inlet and outlet are staggered in each cooling plate), the temperature difference can be reduced by 16.5% when compared to unidirectional flow. Mini-channel with square cross section offers better heat removal and fewer flow resistance compared to circular and elliptical. Although converging mini-channels offer better thermal performance, it drastically increases the pumping power. The battery pack was successful in limiting peak temperature and temperature difference to 303.26 K and 1.98 K, respectively, for 4 C discharge rate.

References

1.
Skerlos
,
S. J.
, and
Winebrake
,
J. J.
,
2010
, “
Targeting Plug-In Hybrid Electric Vehicle Policies to Increase Social Benefits Targeting Plug-In Hybrid Electric Vehicle Policies to Increase Social Benefits
,”
Energy Policy
,
38
(
2
), pp.
705
708
.
2.
Wada
,
M.
,
2009
, “
Research and Development of Electric Vehicles for Clean Transportation
,”
J. Environ. Sci.
,
21
(
6
), pp.
745
749
.
3.
Nishihara
,
M.
,
2010
, “
Hybrid or Electric Vehicles ? A Real Options Perspective
,”
Oper. Res. Lett.
,
38
(
2
), pp.
87
93
.
4.
Avadikyan
,
A.
, and
Llerena
,
P.
,
2010
, “
Technological Forecasting & Social Change a Real Options Reasoning Approach to Hybrid Vehicle Investments
,”
Technol. Forecast. Soc. Change
,
77
(
4
), pp.
649
661
.
5.
Deng
,
D.
,
2015
, “
Li-Ion Batteries : Basics, Progress, and Challenges
,”
Energy Sci. Eng.
,
3
(
5
), pp.
385
418
.
6.
Spotnitz
,
R.
, and
Franklin
,
J.
,
2003
, “
Abuse Behavior of High-Power, Lithium-Ion Cells
,”
J. Power Sources
,
113
(
1
), pp.
81
100
.
7.
Suh
,
I.
,
Cho
,
H.
, and
Lee
,
M.
,
2014
, “
Feasibility Study on Thermoelectric Device to Energy Storage System of an Electric Vehicle
,”
Energy
,
76
, pp.
436
444
.
8.
Bandhauer
,
T. M.
,
Garimella
,
S.
,
Fuller
,
T. F.
,
Soc
,
J. E.
,
P
,
R.-R.
,
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
,”
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), p.
R1
.
9.
Lin
,
H.-P.
,
Chua
,
D.
,
Salomon
,
M.
,
Shiao
,
H.-C.
,
Hendrickson
,
M.
,
Plichta
,
E.
, and
Slane
,
S.
,
2002
, “
Low-Temperature Behavior of Li-Ion Cells
,”
Electrochem. Solid-State Lett.
,
4
(
6
), p.
A71
.
10.
Arora
,
S.
,
2018
, “
Selection of Thermal Management System for Modular Battery Packs of Electric Vehicles : A Review of Existing and Emerging Technologies
,”
J. Power Sources
,
400
, pp.
621
640
.
11.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2017
, “
Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries
,”
Energies
,
10
(
8
), p.
1157
.
12.
Panchal
,
S.
,
Mathewson
,
S.
,
Fraser
,
R.
,
Culham
,
R.
, and
Fowler
,
M.
,
2017
, “
Measurement of Temperature Gradient (dT/dy) and Temperature Response (dT/dt) of a Prismatic Lithium-Ion Pouch Cell with LiFePO4 Cathode Material
,”
SAE Technical Papers
, pp.
1
9
.
13.
Li
,
W.
,
Jishnu
,
A. K.
,
Garg
,
A.
,
Xiao
,
M.
,
Peng
,
X.
, and
Gao
,
L.
,
2020
, “
Heat Transfer Efficiency Enhancement of Lithium-Ion Battery Packs by Using Novel Design of Herringbone Fins
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p. 021108.
14.
Garg
,
A.
,
Cheng
,
L.
,
Jishnu
,
A. K.
,
Gao
,
L.
,
Phung Le
,
M. L.
, and
Tran
,
V. M.
,
2021
, “
A Thompson Sampling Efficient Multi-Objective Optimization Algorithm (TSEMO) for Lithium-Ion Battery Liquid-Cooled Thermal Management System: Study of Hydrodynamic, Thermodynamic and Structural Performance
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p. 021009.
15.
Kim
,
J.
,
Oh
,
J.
, and
Lee
,
H.
,
2019
, “
Review on Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
149
(
Sept.
), pp.
192
212
.
16.
Cheng
,
L.
,
Garg
,
A.
,
Jishnu
,
A. K.
, and
Gao
,
L.
,
2020
, “
Surrogate Based Multi-Objective Design Optimization of Lithium-Ion Battery Air-Cooled System in Electric Vehicles
,”
J. Energy Storage
,
31
, p.
101645
.
17.
Wang
,
N.
,
Li
,
C.
,
Li
,
W.
,
Huang
,
M.
, and
Qi
,
D.
,
2021
, “
Effect Analysis on Performance Enhancement of a Novel Air Cooling Battery Thermal Management System With Spoilers
,”
Appl. Therm. Eng.
,
192
, p.
116932
.
18.
Al Hallaj
,
S.
, and
Selman
,
J. R.
,
2000
, “
A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material
,”
J. Electrochem. Soc.
,
147
(
9
), pp.
3231
3236
.
19.
Javani
,
N.
,
Dincer
,
I.
,
Naterer
,
G. F.
, and
Rohrauer
,
G. L.
,
2014
, “
Modeling of Passive Thermal Management for Electric Vehicle Battery Packs With PCM Between Cells
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
307
316
.
20.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
.
21.
Panchal
,
S.
,
Khasow
,
R.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2017
, “
Thermal Design and Simulation of Mini-Channel Cold Plate for Water Cooled Large Sized Prismatic Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
122
, pp.
80
90
.
22.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
.
23.
Huang
,
Y.
,
Mei
,
P.
,
Lu
,
Y.
,
Huang
,
R.
,
Yu
,
X.
,
Chen
,
Z.
, and
Roskilly
,
A. P.
,
2019
, “
A Novel Approach for Lithium-Ion Battery Thermal Management With Streamline Shape Mini Channel Cooling Plates
,”
Appl. Therm. Eng.
,
157
, p.
113623
.
24.
Panchal
,
S.
,
Gudlanarva
,
K.
,
Tran
,
M. K.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2020
, “
High Reynold’s Number Turbulent Model for Micro-Channel Cold Plate Using Reverse Engineering Approach for Water-Cooled Battery in Electric Vehicles
,”
Energies
,
13
(
7
), p.
1638
.
25.
Patil
,
M. S.
,
Seo
,
J. H.
,
Panchal
,
S.
,
Jee
,
S. W.
, and
Lee
,
M. Y.
,
2020
, “
Investigation on Thermal Performance of Water-Cooled Li-Ion Pouch Cell and Pack at High Discharge Rate With U-Turn Type Microchannel Cold Plate
,”
Int. J. Heat Mass Transfer
,
155
, p.
119728
.
26.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder Based Battery Thermal Management for Cylindrical Lithium-ion Power Battery
,”
Energy Convers. Manage.
,
103
, pp.
157
165
.
27.
Rao
,
Z.
,
Qian
,
Z.
,
Kuang
,
Y.
, and
Li
,
Y.
,
2017
, “
Thermal Performance of Liquid Cooling Based Thermal Management System for Cylindrical Lithium-Ion Battery Module With Variable Contact Surface
,”
Appl. Therm. Eng.
,
123
, pp.
1514
1522
.
28.
Pakrouh
,
R.
,
Hosseini
,
M. J.
,
Bahrampoury
,
R.
,
Ranjbar
,
A. A.
, and
Borhani
,
S. M.
,
2021
, “
Cylindrical Battery Thermal Management Based on Microencapsulated Phase Change Slurry
,”
J. Energy Storage
,
40
, p.
102602
.
29.
Zhao
,
C.
,
Cao
,
W.
,
Dong
,
T.
, and
Jiang
,
F.
,
2018
, “
Thermal Behavior Study of Discharging/Charging Cylindrical Lithium-Ion Battery Module Cooled by Channeled Liquid Flow
,”
Int. J. Heat Mass Transfer
,
120
, pp.
751
762
.
30.
Zhou
,
H.
,
Zhou
,
F.
,
Zhang
,
Q.
,
Wang
,
Q.
, and
Song
,
Z.
,
2019
, “
Thermal Management of Cylindrical Lithium-Ion Battery Based on a Liquid Cooling Method With Half-Helical Duct
,”
Appl. Therm. Eng.
,
162
, p.
114257
.
31.
Huang
,
Y.
,
Lu
,
Y.
,
Huang
,
R.
,
Chen
,
J.
,
Chen
,
F.
,
Liu
,
Z.
,
Yu
,
X.
, and
Roskilly
,
A. P.
,
2017
, “
Study on the Thermal Interaction and Heat Dissipation of Cylindrical Lithium-Ion Battery Cells
,”
Energy Procedia
,
142
, pp.
4029
4036
.
32.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems_Bernadi
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.
33.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
, and
Gao
,
L.
,
2021
, “
Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p. 021015.
34.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A. O.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium-Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
.
35.
Wang
,
T.
,
Tseng
,
K. J.
, and
Zhao
,
J.
,
2015
, “
Development of Efficient Air-Cooling Strategies for Lithium-Ion Battery Module Based on Empirical Heat Source Model
,”
Appl. Therm. Eng.
,
90
, pp.
521
529
.
36.
Ye
,
B.
,
Rubel
,
M. R. H.
, and
Li
,
H.
,
2019
, “
Design and Optimization of Cooling Plate for Battery Module of an Electric Vehicle
,”
Appl. Sci.
,
9
(
4
), p.
754
.
You do not currently have access to this content.