Abstract

Pouch type lithium-ion battery (LIB) has now been widely used in electric vehicles, smartphones, and computers. Mechanical abuse is one of the main reasons to cause the safety issues for lithium-ion battery. The highly accurate and efficient computational model is helpful for the safety design, application, and analysis of LIB. The previous homogenized mechanical models of the pouch LIB use different material parameters for various loading conditions. Herein, we establish an anisotropic homogenized method to predict the mechanical behavior in in-plane and out-of-plane directions simultaneously. Engineering constants and Hill's 48 criteria are used for the anisotropic properties, and bilinear plastic model is used as the hardening curve under large deformation. On the basis of this method, we established two homogenized models, i.e., one-layer model and multilayer model. Experiments in various loading conditions including three-point bending (length direction and width direction), out-of-plane compression, and in-plane compression (length direction and width direction) are conducted for parameters calibration. The calibration methods are then discussed and confirmed through these experiments. The computational models show good correlation with experiments in both in-plane and out-of-plane directions. The difference is that the global buckling behavior can be predicted by both of the two models, while the local buckling can be predicted only by the multilayer model. The results may shield light on the safety design, application, and analysis for pouch LIB.

References

1.
Wang
,
Q.
,
Mao
,
B.
,
Stoliarov
,
S. I.
, and
Sun
,
J.
,
2019
, “
A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies
,”
Prog. Energy Combust. Sci.
,
73
, pp.
95
131
. 10.1016/j.pecs.2019.03.002
2.
Sun
,
P.
,
Bisschop
,
R.
,
Niu
,
H.
, and
Huang
,
X.
,
2020
, “
A Review of Battery Fires in Electric Vehicles
,”
Fire Technol.
,
56
(
4
), pp.
1361
1410
. 10.1007/s10694-019-00944-3
3.
Liu
,
K.
,
Liu
,
Y.
,
Lin
,
D.
,
Pei
,
A.
, and
Cui
,
Y.
,
2018
, “
Materials for Lithium-Ion Battery Safety
,”
Sci. Adv.
,
4
(
6
), p.
eaas9820
. 10.1126/sciadv.aas9820
4.
Zhu
,
J.
,
Wierzbicki
,
T.
, and
Li
,
W.
,
2018
, “
A Review of Safety-Focused Mechanical Modeling of Commercial Lithium-Ion Batteries
,”
J. Power Sources
,
378
, pp.
153
168
. 10.1016/j.jpowsour.2017.12.034
5.
Lai
,
W. J.
,
Ali
,
M. Y.
, and
Pan
,
J.
,
2014
, “
Mechanical Behavior of Representative Volume Elements of Lithium-Ion Battery Modules Under Various Loading Conditions
,”
J. Power Sources
,
248
, pp.
789
808
. 10.1016/j.jpowsour.2013.09.128
6.
Lai
,
W. J.
,
Ali
,
M. Y.
, and
Pan
,
J.
,
2014
, “
Mechanical Behavior of Representative Volume Elements of Lithium-Ion Battery Cells Under Compressive Loading Conditions
,”
J. Power Sources
,
245
, pp.
609
623
. 10.1016/j.jpowsour.2013.06.134
7.
Sahraei
,
E.
,
Hill
,
R.
, and
Wierzbicki
,
T.
,
2012
, “
Calibration and Finite Element Simulation of Pouch Lithium-Ion Batteries for Mechanical Integrity
,”
J. Power Sources
,
201
, pp.
307
321
. 10.1016/j.jpowsour.2011.10.094
8.
Wang
,
H.
,
Simunovic
,
S.
,
Maleki
,
H.
,
Howard
,
J. N.
, and
Hallmark
,
J. A.
,
2016
, “
Internal Configuration of Prismatic Lithium-Ion Cells at the Onset of Mechanically Induced Short Circuit
,”
J. Power Sources
,
306
, pp.
424
430
. 10.1016/j.jpowsour.2015.12.026
9.
Zhu
,
J. E.
,
Koch
,
M. M.
,
Lian
,
J. H.
,
Li
,
W.
, and
Wierzbicki
,
T.
,
2020
, “
Mechanical Deformation of Lithium-Ion Pouch Cells Under In-Plane Loads—Part I: Experimental Investigation
,”
J. Electrochem. Soc.
,
167
(
9
), p.
9
.
10.
Tobishima
,
S.
, and
Yamaki
,
J.
,
1999
, “
A Consideration of Lithium Cell Safety
,”
J. Power Sources
,
81–82
, pp.
882
886
. 10.1016/S0378-7753(98)00240-7
11.
Tobishima
,
S. I.
,
2000
,
Electroceramics in Japan III
, Vol.
181–1
,
N.
Murata
,
K.
Shinozaki
, and
T.
Kimura
, eds.,
Trans Tech Publications
,
Japan
, pp.
135
138
.
12.
Maleki
,
H.
, and
Howard
,
J. N.
,
2009
, “
Internal Short Circuit in Li-Ion Cells
,”
J. Power Sources
,
191
(
2
), pp.
568
574
. 10.1016/j.jpowsour.2009.02.070
13.
Zhao
,
W.
,
Luo
,
G.
, and
Wang
,
C. Y.
,
2015
, “
Modeling Nail Penetration Process in Large-Format Li-Ion Cells
,”
J. Electrochem. Soc.
,
162
(
1
), pp.
A207
A217
. 10.1149/2.1071501jes
14.
Cai
,
W.
,
Wang
,
H.
,
Maleki
,
H.
,
Howard
,
J.
, and
Lara-Curzio
,
E.
,
2011
, “
Experimental Simulation of Internal Short Circuit in Li-Ion and Li-Ion-Polymer Cells
,”
J. Power Sources
,
196
(
18
), pp.
7779
7783
. 10.1016/j.jpowsour.2011.04.024
15.
Zavalis
,
T. G.
,
Behm
,
M.
, and
Lindbergh
,
G.
,
2012
, “
Investigation of Short-Circuit Scenarios in a Lithium-Ion Battery Cell
,”
J. Electrochem. Soc.
,
159
(
6
), pp.
A848
A859
. 10.1149/2.096206jes
16.
Zhu
,
X.
,
Wang
,
H.
,
Wang
,
X.
,
Gao
,
Y.
,
Allu
,
S.
,
Cakmak
,
E.
, and
Wang
,
Z.
,
2020
, “
Internal Short Circuit and Failure Mechanisms of Lithium-Ion Pouch Cells Under Mechanical Indentation Abuse Conditions: An Experimental Study
,”
J. Power Sources
,
455
, p.
227939
. 10.1016/j.jpowsour.2020.227939
17.
Pan
,
Z.
,
Li
,
W.
, and
Xia
,
Y.
,
2020
, “
Experiments and 3D Detailed Modeling for a Pouch Battery Cell Under Impact Loading
,”
J. Energy Storage
,
27
, p.
101016
. 10.1016/j.est.2019.101016
18.
Kermani
,
G.
, and
Sahraei
,
E.
,
2019
, “
Dynamic Impact Response of Lithium-Ion Batteries, Constitutive Properties and Failure Model
,”
RSC Adv.
,
9
(
5
), pp.
2464
2473
. 10.1039/C8RA08898E
19.
Deng
,
J.
,
Smith
,
I.
,
Bae
,
C.
,
Rairigh
,
P.
,
Miller
,
T.
,
Surampudi
,
B.
,
L'Eplattenier
,
P.
, and
Caldichoury
,
I.
,
2020
, “
Impact Modeling and Testing of Pouch and Prismatic Cells
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090550
. 10.1149/1945-7111/ab9962
20.
Chen
,
Y.
,
Santhanagopalan
,
S.
,
Babu
,
V.
, and
Ding
,
Y.
,
2019
, “
Dynamic Mechanical Behavior of Lithium-Ion Pouch Cells Subjected to High-Velocity Impact
,”
Compos. Struct.
,
218
, pp.
50
59
. 10.1016/j.compstruct.2019.03.046
21.
Wang
,
L.
,
Yin
,
S.
,
Zhang
,
C.
,
Huan
,
Y.
, and
Xu
,
J.
,
2018
, “
Mechanical Characterization and Modeling for Anodes and Cathodes in Lithium-Ion Batteries
,”
J. Power Sources
,
392
, pp.
265
273
. 10.1016/j.jpowsour.2018.05.007
22.
Wang
,
L.
,
Duan
,
X.
,
Liu
,
B.
,
Li
,
Q. M.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Deformation and Failure Behaviors of Anode in Lithium-Ion Batteries: Model and Mechanism
,”
J. Power Sources
,
448
.
23.
Zhu
,
J.
,
Luo
,
H.
,
Li
,
W.
,
Gao
,
T.
,
Xia
,
Y.
, and
Wierzbicki
,
T.
,
2018
, “
Mechanism of Strengthening of Battery Resistance Under Dynamic Loading
,”
Int. J. Imp. Eng.
,
131
, pp.
78
84
. doi.org/10.1016/j.ijimpeng.2019.05.003
24.
Greve
,
L.
, and
Fehrenbach
,
C.
,
2012
, “
Mechanical Testing and Macro-Mechanical Finite Element Simulation of the Deformation, Fracture, and Short Circuit Initiation of Cylindrical Lithium Ion Battery Cells
,”
J. Power Sources
,
214
, pp.
377
385
. 10.1016/j.jpowsour.2012.04.055
25.
Wierzbicki
,
T.
, and
Sahraei
,
E.
,
2013
, “
Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
J. Power Sources
,
241
, pp.
467
476
. 10.1016/j.jpowsour.2013.04.135
26.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
X.
, and
Hu
,
D.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
, pp.
180
189
. 10.1016/j.apenergy.2016.03.108
27.
Liu
,
B. H.
,
Zhang
,
J. J.
,
Zhang
,
C.
, and
Xu
,
J.
,
2018
, “
Mechanical Integrity of 18650 Lithium-Ion Battery Module: Packing Density and Packing Mode
,”
Eng. Fail. Anal.
,
91
, pp.
315
326
. 10.1016/j.engfailanal.2018.04.041
28.
Zhang
,
C.
,
Xu
,
J.
,
Cao
,
L.
,
Wu
,
Z.
, and
Santhanagopalan
,
S.
,
2017
, “
Constitutive Behavior and Progressive Mechanical Failure of Electrodes in Lithium-Ion Batteries
,”
J. Power Sources
,
357
, pp.
126
137
. 10.1016/j.jpowsour.2017.04.103
29.
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
A Detailed Computational Model for Cylindrical Lithium-Ion Batteries Under Mechanical Loading: From Cell Deformation to Short-Circuit Onset
,”
J. Power Sources
,
413
, pp.
284
292
. 10.1016/j.jpowsour.2018.12.059
30.
Sahraei
,
E.
,
Campbell
,
J.
, and
Wierzbicki
,
T.
,
2012
, “
Modeling and Short Circuit Detection of 18650 Li-Ion Cells Under Mechanical Abuse Conditions
,”
J. Power Sources
,
220
, pp.
360
372
. 10.1016/j.jpowsour.2012.07.057
31.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
L.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell Upon Crushing
,”
Eng. Fail. Anal.
,
53
, pp.
97
110
. 10.1016/j.engfailanal.2015.03.025
32.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
, pp.
102
113
. 10.1016/j.jpowsour.2015.04.162
33.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
A Representative-Sandwich Model for Simultaneously Coupled Mechanical-Electrical-Thermal Simulation of a Lithium-Ion Cell Under Quasi-Static Indentation Tests
,”
J. Power Sources
,
298
, pp.
309
321
. 10.1016/j.jpowsour.2015.08.049
34.
Liu
,
B.
,
Yin
,
S.
, and
Xu
,
J.
,
2016
, “
Integrated Computation Model of Lithium-Ion Battery Subject to Nail Penetration
,”
Appl. Energy
,
183
, pp.
278
289
. 10.1016/j.apenergy.2016.08.101
35.
Wang
,
H.
,
Kumar
,
A.
,
Simunovic
,
S.
,
Allu
,
S.
,
Kalnaus
,
S.
,
Turner
,
J. A.
,
Helmers
,
J. C.
,
Rules
,
E. T.
,
Winchester
,
C. S.
, and
Gorney
,
P.
,
2017
, “
Progressive Mechanical Indentation of Large-Format Li-Ion Cells
,”
J. Power Sources
,
341
, pp.
156
164
. 10.1016/j.jpowsour.2016.11.094
36.
Lian
,
J.
,
Koch
,
M.
,
Li
,
W.
,
Wierzbicki
,
T.
, and
Zhu
,
J.
,
2020
, “
Mechanical Deformation of Lithium-Ion Pouch Cells Under In-Plane Loads—Part II: Computational Modeling
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090556
. 10.1149/1945-7111/ab9eee
You do not currently have access to this content.