Abstract

Anthropogenic activities powered by the burning of fossil fuels have caused excessive emissions of carbon dioxide (CO2) to the atmosphere. This has a negative impact on our environment. One promising approach to reduce the concentration of atmospheric CO2 is to convert it to useful products. This could be achieved via the electrochemical reduction of CO2 using renewable electricity. Methanol (CH3OH), a valuable fuel and feedstock, is one of the CO2 electroreduction products. However, its formation, thus far, has been plagued by the inadequacy of functional electrocatalysts. In this review, we summarize progresses made in the development of methanol-selective electrocatalysts, which provides us with a basis to discuss the underlying challenges of electroreducing CO2 to methanol.

References

1.
Bao
,
J.
,
Lu
,
W.-H.
,
Zhao
,
J.
, and
Bi
,
X. T.
,
2018
, “
Greenhouses for CO2 Sequestration From Atmosphere
,”
Carbon Resour. Convers.
,
1
(
2
), pp.
183
190
. 10.1016/j.crcon.2018.08.002
2.
Olah
,
G. A.
,
2005
, “
Beyond Oil and Gas: The Methanol Economy
,”
Angew. Chem. Int. Ed.
,
44
(
18
), pp.
2636
2639
. 10.1002/anie.200462121
3.
Olah
,
G. A.
,
Goeppert
,
A.
, and
Prakash
,
G. K. S.
,
2009
, “The “Methanol Economy”: General Aspects,”
Beyond Oil and Gas: The Methanol Economy
,
G. A.
Olah
,
A.
Goeppert
, and
G. K. S.
Prakash
, eds.,
Wiley VCH
,
Weinheim
, pp.
179
184
.
4.
Olah
,
G. A.
,
Goeppert
,
A.
, and
Prakash
,
G. K.
,
2009
, “
Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons
,”
J. Org. Chem.
,
74
(
2
), pp.
487
498
. 10.1021/jo801260f
5.
Kajaste
,
R.
,
Hurme
,
M.
, and
Oinas
,
P.
,
2018
, “
Methanol-Managing Greenhouse Gas Emissions in the Production Chain by Optimizing the Resource Base
,”
AIMS Energy
,
6
(
6
), pp.
1074
1102
.
6.
Bellotti
,
D.
,
Dierks
,
M.
,
Moellenbruck
,
F.
,
Magistri
,
L.
,
Görner
,
K.
, and
Oeljeklaus
,
G.
,
2019
, “
Thermodynamic and Economic Analysis of a Plant for the CO2 Hydrogenation for Methanol Production
,”
E3S Web Conf.
,
113
, p.
01013
. 10.1051/e3sconf/201911301013
7.
Bozzano
,
G.
, and
Manenti
,
F.
,
2016
, “
Efficient Methanol Synthesis: Perspectives, Technologies and Optimization Strategies
,”
Prog. Energy Combust. Sci.
,
56
(
Supplement C
), pp.
71
105
. 10.1016/j.pecs.2016.06.001
8.
Rumayor
,
M.
,
Dominguez-Ramos
,
A.
, and
Irabien
,
A.
,
2019
, “
Innovative Alternatives to Methanol Manufacture: Carbon Footprint Assessment
,”
J. Cleaner Prod.
,
225
, pp.
426
434
. 10.1016/j.jclepro.2019.03.015
9.
Agarwal
,
A. K.
,
Gautam
,
A.
,
Sharma
,
N.
, and
Singh
,
A. P.
,
2019
, “Introduction of Methanol and Alternate Fuel Economy,”
Methanol and the Alternate Fuel Economy
,
A. K.
Agarwal
,
A.
Gautam
,
N.
Sharma
, and
A. P.
Singh
, eds.,
Springer
,
Singapore
, pp.
3
6
.
10.
Kuhl
,
K. P.
,
Cave
,
E. R.
,
Abram
,
D. N.
, and
Jaramillo
,
T. F.
,
2012
, “
New Insights into the Electrochemical Reduction of Carbon Dioxide on Metallic Copper Surfaces
,”
Energy Environ. Sci.
,
5
(
5
), pp.
7050
7059
. 10.1039/c2ee21234j
11.
Kortlever
,
R.
,
Peters
,
I.
,
Balemans
,
C.
,
Kas
,
R.
,
Kwon
,
Y.
,
Mul
,
G.
, and
Koper
,
M. T. M.
,
2016
, “
Palladium–Gold Catalyst for the Electrochemical Reduction of CO2 to C1–C5 Hydrocarbons
,”
Chem. Commun.
,
52
(
67
), pp.
10229
10232
. 10.1039/C6CC03717H
12.
Lee
,
S.
,
Kim
,
D.
, and
Lee
,
J.
,
2015
, “
Electrocatalytic Production of C3-C4 Compounds by Conversion of CO2 on a Chloride-Induced Bi-Phasic Cu2O-Cu Catalyst
,”
Angew. Chem. Int. Ed.
,
127
(
49
), pp.
14914
14918
. 10.1002/ange.201505730
13.
Canfield
,
D.
, and
Frese,
Jr,
K.
,
1983
, “
Reduction of Carbon Dioxide to Methanol on n-and p-GaAs and p-InP. Effect of Crystal Face, Electrolyte and Current Density
,”
J. Electrochem. Soc.
,
130
(
8
), pp.
1772
1773
. 10.1149/1.2120090
14.
Yadav
,
V. S. K.
, and
Purkait
,
M. K.
,
2016
, “
Effect of Copper Oxide Electrocatalyst on CO2 Reduction Using Co3O4 as Anode
,”
J. Sci. Adv. Mater. Devices
,
1
(
3
), pp.
330
336
. 10.1016/j.jsamd.2016.07.006
15.
Kuhl
,
K. P.
,
Hatsukade
,
T.
,
Cave
,
E. R.
,
Abram
,
D. N.
,
Kibsgaard
,
J.
, and
Jaramillo
,
T. F.
,
2014
, “
Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
,”
J. Am. Chem. Soc.
,
136
(
40
), pp.
14107
14113
. 10.1021/ja505791r
16.
Barton Cole
,
E. E.
,
Baruch
,
M. F.
,
L’Esperance
,
R. P.
,
Kelly
,
M. T.
,
Lakkaraju
,
P. S.
,
Zeitler
,
E. L.
, and
Bocarsly
,
A. B.
,
2015
, “
Substituent Effects in the Pyridinium Catalyzed Reduction of CO2 to Methanol: Further Mechanistic Insights
,”
Top. Catal.
,
58
(
1
), pp.
15
22
. 10.1007/s11244-014-0343-z
17.
Wu
,
Y.
,
Jiang
,
Z.
,
Lu
,
X.
,
Liang
,
Y.
, and
Wang
,
H.
,
2019
, “
Domino Electroreduction of CO2 to Methanol on a Molecular Catalyst
,”
Nature
,
575
(
7784
), pp.
639
642
. 10.1038/s41586-019-1760-8
18.
Low
,
Q. H.
,
Loo
,
N. W. X.
,
Calle-Vallejo
,
F.
, and
Yeo
,
B. S.
,
2019
, “
Enhanced Electroreduction of Carbon Dioxide to Methanol Using Zinc Dendrites Pulse-Deposited on Silver Foam
,”
Angew. Chem. Int. Ed.
,
58
(
8
), pp.
2256
2260
. 10.1002/anie.201810991
19.
Mou
,
S.
,
Wu
,
T.
,
Xie
,
J.
,
Zhang
,
Y.
,
Ji
,
L.
,
Huang
,
H.
,
Wang
,
T.
,
Luo
,
Y.
,
Xiong
,
X.
,
Tang
,
B.
, and
Sun
,
X.
,
2019
, “
Boron Phosphide Nanoparticles: A Nonmetal Catalyst for High-Selectivity Electrochemical Reduction of CO2 to CH3OH
,”
Adv. Mater.
,
31
(
36
), p.
1903499
. 10.1002/adma.201903499
20.
Yang
,
D.
,
Zhu
,
Q.
,
Chen
,
C.
,
Liu
,
H.
,
Liu
,
Z.
,
Zhao
,
Z.
,
Zhang
,
X.
,
Liu
,
S.
, and
Han
,
B.
,
2019
, “
Selective Electroreduction of Carbon Dioxide to Methanol on Copper Selenide Nanocatalysts
,”
Nat. Commun.
,
10
(
1
), p.
677
. 10.1038/s41467-019-08653-9
21.
Albo
,
J.
, and
Irabien
,
A.
,
2016
, “
Cu2O-Loaded Gas Diffusion Electrodes for the Continuous Electrochemical Reduction of CO2 to Methanol
,”
J. Catal.
,
343
, pp.
232
239
. 10.1016/j.jcat.2015.11.014
22.
Bandi
,
A.
, and
Kühne
,
H. M.
,
1992
, “
Electrochemical Reduction of Carbon Dioxide in Water: Analysis of Reaction Mechanism on Ruthenium-Titanium-Oxide
,”
J. Electrochem. Soc.
,
139
(
6
), pp.
1605
1610
. 10.1149/1.2069464
23.
Qu
,
J.
,
Zhang
,
X.
,
Wang
,
Y.
, and
Xie
,
C.
,
2005
, “
Electrochemical Reduction of CO2 on RuO2/TiO2 Nanotubes Composite Modified Pt Electrode
,”
Electrochim. Acta
,
50
(
16
), pp.
3576
3580
. 10.1016/j.electacta.2004.11.061
24.
Mezzavilla
,
S.
,
Katayama
,
Y.
,
Rao
,
R.
,
Hwang
,
J.
,
Regoutz
,
A.
,
Shao-Horn
,
Y.
,
Chorkendorff
,
I.
, and
Stephens
,
I. E. L.
,
2019
, “
Activity-or Lack Thereof-of RuO2-Based Electrodes in the Electrocatalytic Reduction of CO2
,”
J. Phys. Chem. C
,
123
(
29
), pp.
17765
17773
. 10.1021/acs.jpcc.9b01431
25.
Le
,
M.
,
Ren
,
M.
,
Zhang
,
Z.
,
Sprunger
,
P. T.
,
Kurtz
,
R. L.
, and
Flake
,
J. C.
,
2011
, “
Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces
,”
J. Electrochem. Soc.
,
158
(
5
), pp.
E45
E49
. 10.1149/1.3561636
26.
Ren
,
D.
,
Deng
,
Y.
,
Handoko
,
A. D.
,
Chen
,
C. S.
,
Malkhandi
,
S.
, and
Yeo
,
B. S.
,
2015
, “
Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts
,”
ACS Catal.
,
5
(
5
), pp.
2814
2821
. 10.1021/cs502128q
27.
Albo
,
J.
,
Alvarez-Guerra
,
M.
,
Castaño
,
P.
, and
Irabien
,
A.
,
2015
, “
Toward the Electrochemical Conversion of Carbon Dioxide into Methanol
,”
Green Chem.
,
17
(
4
), pp.
2304
2324
. 10.1039/C4GC02453B
28.
Zhang
,
L.
,
Zhao
,
Z.-J.
, and
Gong
,
J.
,
2017
, “
Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and Their Related Reaction Mechanisms
,”
Angew. Chem. Int. Ed.
,
56
(
38
), pp.
11326
11353
. 10.1002/anie.201612214
29.
Rego de Vasconcelos
,
B.
, and
Lavoie
,
J.-M.
,
2019
, “
Recent Advances in Power-to-X Technology for the Production of Fuels and Chemicals
,”
Front. Chem.
,
7
, p.
392
. 10.3389/fchem.2019.00392
30.
Mistry
,
H.
,
Varela
,
A. S.
,
Kühl
,
S.
,
Strasser
,
P.
, and
Cuenya
,
B. R.
,
2016
, “
Nanostructured Electrocatalysts With Tunable Activity and Selectivity
,”
Nat. Rev. Mater.
,
1
(
4
), p.
16009
. 10.1038/natrevmats.2016.9
31.
Le Duff
,
C. S.
,
Lawrence
,
M. J.
, and
Rodriguez
,
P.
,
2017
, “
Role of the Adsorbed Oxygen Species in the Selective Electrochemical Reduction of CO2 to Alcohols and Carbonyls on Copper Electrodes
,”
Angew. Chem. Int. Ed.
,
129
(
42
), pp.
13099
13104
. 10.1002/ange.201706463
32.
Andrews
,
E.
,
Ren
,
M.
,
Wang
,
F.
,
Zhang
,
Z.
,
Sprunger
,
P.
,
Kurtz
,
R.
, and
Flake
,
J.
,
2013
, “
Electrochemical Reduction of CO2 at Cu Nanocluster / (101̅0) ZnO Electrodes
,”
J. Electrochem. Soc.
,
160
(
11
), pp.
H841
H846
. 10.1149/2.105311jes
33.
Watanabe
,
M.
,
Shibata
,
M.
,
Kato
,
A.
,
Azuma
,
M.
, and
Sakata
,
T.
,
1991
, “
Design of Alloy Electrocatalysts for CO2 Reduction: III. The Selective and Reversible Reduction of on Cu Alloy Electrodes
,”
J. Electrochem. Soc.
,
138
(
11
), pp.
3382
3389
. 10.1149/1.2085417
34.
Jia
,
F.
,
Yu
,
X.
, and
Zhang
,
L.
,
2014
, “
Enhanced Selectivity for the Electrochemical Reduction of CO2 to Alcohols in Aqueous Solution With Nanostructured Cu–Au Alloy as Catalyst
,”
J. Power Sources
,
252
, pp.
85
89
. 10.1016/j.jpowsour.2013.12.002
35.
Hatsukade
,
T.
,
Kuhl
,
K. P.
,
Cave
,
E. R.
,
Abram
,
D. N.
,
Feaster
,
J. T.
,
Jongerius
,
A. L.
,
Hahn
,
C.
, and
Jaramillo
,
T. F.
,
2017
, “
Carbon Dioxide Electroreduction Using a Silver–Zinc Alloy
,”
Energy Technol.
,
5
(
6
), pp.
955
961
. 10.1002/ente.201700087
36.
Paris
,
A. R.
, and
Bocarsly
,
A. B.
,
2017
, “
Ni–Al Films on Glassy Carbon Electrodes Generate an Array of Oxygenated Organics From CO2
,”
ACS Catal.
,
7
(
10
), pp.
6815
6820
. 10.1021/acscatal.7b02146
37.
Popić
,
J. P.
,
Avramov-Ivić
,
M. L.
, and
Vuković
,
N. B.
,
1997
, “
Reduction of Carbon Dioxide on Ruthenium Oxide and Modified Ruthenium Oxide Electrodes in 0.5 M NaHCO3
,”
J. Electroanal. Chem.
,
421
(
1
), pp.
105
110
. 10.1016/S0022-0728(96)04823-1
38.
Bandi
,
A.
,
1990
, “
Electrochemical Reduction of Carbon Dioxide on Conductive Metallic Oxides
,”
J. Electrochem. Soc.
,
137
(
7
), pp.
2157
2160
. 10.1149/1.2086903
39.
Shironita
,
S.
,
Karasuda
,
K.
,
Sato
,
K.
, and
Umeda
,
M.
,
2013
, “
Methanol Generation by CO2 Reduction at a Pt–Ru/C Electrocatalyst Using a Membrane Electrode Assembly
,”
J. Power Sources
,
240
, pp.
404
410
. 10.1016/j.jpowsour.2013.04.034
40.
Frese
,
K. W.
, and
Canfield
,
D.
,
1984
, “
Reduction of CO2 on n-GaAs Electrodes and Selective Methanol Synthesis
,”
J. Electrochem. Soc.
,
131
(
11
), pp.
2518
2522
. 10.1149/1.2115351
41.
Zhang
,
W.
,
Qin
,
Q.
,
Dai
,
L.
,
Qin
,
R.
,
Zhao
,
X.
,
Chen
,
X.
,
Ou
,
D.
,
Chen
,
J.
,
Chuong
,
T. T.
,
Wu
,
B.
, and
Zheng
,
N.
,
2018
, “
Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO2 Nanosheets With Abundant Pd-O-Sn Interfaces
,”
Angew. Chem. Int. Ed.
,
57
(
30
), pp.
9475
9479
. 10.1002/anie.201804142
42.
Zheng
,
W.
,
Nayak
,
S.
,
Yuan
,
W.
,
Zeng
,
Z.
,
Hong
,
X.
,
Vincent
,
K. A.
, and
Tsang
,
S. C. E.
,
2016
, “
A Tunable Metal–Polyaniline Interface for Efficient Carbon Dioxide Electro-Reduction to Formic Acid and Methanol in Aqueous Solution
,”
Chem. Commun.
,
52
(
96
), pp.
13901
13904
. 10.1039/C6CC07212G
43.
Frese
,
K. W.
,
1991
, “
Electrochemical Reduction of CO2 at Intentionally Oxidized Copper Electrodes
,”
J. Electrochem. Soc.
,
138
(
11
), pp.
3338
3344
. 10.1149/1.2085411
44.
Chang
,
T.-Y.
,
Liang
,
R.-M.
,
Wu
,
P.-W.
,
Chen
,
J.-Y.
, and
Hsieh
,
Y.-C.
,
2009
, “
Electrochemical Reduction of CO2 by Cu2O-Catalyzed Carbon Clothes
,”
Mater. Lett.
,
63
(
12
), pp.
1001
1003
. 10.1016/j.matlet.2009.01.067
45.
Malik
,
M. I.
,
Malaibari
,
Z. O.
,
Atieh
,
M.
, and
Abussaud
,
B.
,
2016
, “
Electrochemical Reduction of CO2 to Methanol Over MWCNTs Impregnated With Cu2O
,”
Chem. Eng. Sci.
,
152
, pp.
468
477
. 10.1016/j.ces.2016.06.035
46.
Safdar Hossain
,
S.
,
Rahman
,
S. U.
, and
Ahmed
,
S.
,
2014
, “
Electrochemical Reduction of Carbon Dioxide Over CNT-Supported Nanoscale Copper Electrocatalysts
,”
J. Nanomater.
,
2014
, pp.
1
10
. 10.1155/2014/374318
47.
Periasamy
,
A. P.
,
Ravindranath
,
R.
,
Senthil Kumar
,
S. M.
,
Wu
,
W.-P.
,
Jian
,
T.-R.
, and
Chang
,
H.-T.
,
2018
, “
Facet- and Structure-Dependent Catalytic Activity of Cuprous Oxide/Polypyrrole Particles Toward the Efficient Reduction of Carbon Dioxide to Methanol
,”
Nanoscale
,
10
(
25
), pp.
11869
11880
. 10.1039/C8NR02117A
48.
Kim
,
D.
,
Lee
,
S.
,
Ocon
,
J. D.
,
Jeong
,
B.
,
Lee
,
J. K.
, and
Lee
,
J.
,
2015
, “
Insights into an Autonomously Formed Oxygen-Evacuated Cu2O Electrode for the Selective Production of C2H4 From CO2
,”
Phys. Chem. Chem. Phys.
,
17
(
2
), pp.
824
830
. 10.1039/C4CP03172E
49.
Frese
,
K. W.
, and
Leach
,
S.
,
1985
, “
Electrochemical Reduction of Carbon Dioxide to Methane, Methanol, and CO on Ru Electrodes
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
259
260
. 10.1149/1.2113780
50.
Summers
,
D. P.
,
Leach
,
S.
, and
Frese
,
K. W.
,
1986
, “
The Electrochemical Reduction of Aqueous Carbon Dioxide to Methanol at Molybdenum Electrodes With Low Overpotentials
,”
J. Electroanal. Chem. Interfacial Electrochem.
,
205
(
1
), pp.
219
232
. 10.1016/0022-0728(86)90233-0
51.
Spataru
,
N.
,
Tokuhiro
,
K.
,
Terashima
,
C.
,
Rao
,
T. N.
, and
Fujishima
,
A.
,
2003
, “
Electrochemical Reduction of Carbon Dioxide at Ruthenium Dioxide Deposited on Boron-Doped Diamond
,”
J. Appl. Electrochem.
,
33
(
12
), pp.
1205
1210
. 10.1023/B:JACH.0000003866.85015.b6
52.
Pal
,
P.
, and
Nayak
,
J.
,
2017
, “
Acetic Acid Production and Purification: Critical Review Toward Process Intensification
,”
Sep. Purif. Rev.
,
46
(
1
), pp.
44
61
. 10.1080/15422119.2016.1185017
53.
Kapusta
,
S.
, and
Hackerman
,
N.
,
1984
, “
Carbon Dioxide Reduction at a Metal Phthalocyanine Catalyzed Carbon Electrode
,”
J. Electrochem. Soc.
,
131
(
7
), pp.
1511
1514
. 10.1149/1.2115882
54.
Huang
,
J.
,
Guo
,
X.
,
Yue
,
G.
,
Hu
,
Q.
, and
Wang
,
L.
,
2018
, “
Boosting CH3OH Production in Electrocatalytic CO2 Reduction Over Partially Oxidized 5 nm Cobalt Nanoparticles Dispersed on Single-Layer Nitrogen-Doped Graphene
,”
ACS Appl. Mater. Interfaces
,
10
(
51
), pp.
44403
44414
. 10.1021/acsami.8b14822
55.
Huang
,
J.
,
Hu
,
Q.
,
Guo
,
X.
,
Zeng
,
Q.
, and
Wang
,
L.
,
2018
, “
Rethinking Co(CO3)0.5(OH)·0.11H2O: A New Property for Highly Selective Electrochemical Reduction of Carbon Dioxide to Methanol in Aqueous Solution
,”
Green Chem.
,
20
(
13
), pp.
2967
2972
. 10.1039/C7GC03744A
56.
Boutin
,
E.
,
Wang
,
M.
,
Lin
,
J. C.
,
Mesnage
,
M.
,
Mendoza
,
D.
,
Lassalle-Kaiser
,
B.
,
Hahn
,
C.
,
Jaramillo
,
T. F.
, and
Robert
,
M.
,
2019
, “
Aqueous Electrochemical Reduction of Carbon Dioxide and Carbon Monoxide into Methanol With Cobalt Phthalocyanine
,”
Angew. Chem., Int. Ed. Engl.
,
58
(
45
), pp.
16172
16176
. 10.1002/anie.201909257
57.
Watanabe
,
M.
,
Shibata
,
M.
,
Katoh
,
A.
,
Azuma
,
M.
, and
Sakata
,
T.
,
1991
, “
Design of Allory Electrocatalysts for CO2 Reduction (I).The Selective and Reversible Reduction of CO2 at Cu-Ni Alloy Electrodes
,”
Denki Kagaku
,
59
(
6
), pp.
508
516
. 10.5796/kogyobutsurikagaku.59.508
58.
Kobayashi
,
T.
, and
Takahashi
,
H.
,
2004
, “
Novel CO2 Electrochemical Reduction to Methanol for H2 Storage
,”
Energy Fuels
,
18
(
1
), pp.
285
286
. 10.1021/ef030121v
59.
Schizodimou
,
A.
, and
Kyriacou
,
G.
,
2012
, “
Acceleration of the Reduction of Carbon Dioxide in the Presence of Multivalent Cations
,”
Electrochim. Acta
,
78
, pp.
171
176
. 10.1016/j.electacta.2012.05.118
60.
Dixit
,
R. J.
, and
Majumder
,
C. B.
,
2018
, “
CO2 Capture and Electro-Conversion into Valuable Organic Products: A Batch and Continuous Study
,”
J. CO2 Util.
,
26
, pp.
80
92
. 10.1016/j.jcou.2018.04.027
61.
Seshadri
,
G.
,
Lin
,
C.
, and
Bocarsly
,
A. B.
,
1994
, “
A New Homogeneous Electrocatalyst for the Reduction of Carbon Dioxide to Methanol at Low Overpotential
,”
J. Electroanal. Chem.
,
372
(
1
), pp.
145
150
. 10.1016/0022-0728(94)03300-5
62.
Barton Cole
,
E.
,
Lakkaraju
,
P. S.
,
Rampulla
,
D. M.
,
Morris
,
A. J.
,
Abelev
,
E.
, and
Bocarsly
,
A. B.
,
2010
, “
Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights
,”
J. Am. Chem. Soc.
,
132
(
33
), pp.
11539
11551
. 10.1021/ja1023496
63.
Ohkawa
,
K.
,
Hashimoto
,
K.
,
Fujishima
,
A.
,
Noguchi
,
Y.
, and
Nakayama
,
S.
,
1993
, “
Electrochemical Reduction of Carbon Dioxide on Hydrogenstoring Materials: Part 1. The Effect of Hydrogen Absorption on the Electrochemical Behavior on Palladium Electrodes
,”
J. Electroanal. Chem.
,
345
(
1
), pp.
445
456
. 10.1016/0022-0728(93)80495-4
64.
Yan
,
Y.
,
Zeitler
,
E. L.
,
Gu
,
J.
,
Hu
,
Y.
, and
Bocarsly
,
A. B.
,
2013
, “
Electrochemistry of Aqueous Pyridinium: Exploration of a Key Aspect of Electrocatalytic Reduction of CO2 to Methanol
,”
J. Am. Chem. Soc.
,
135
(
38
), pp.
14020
14023
. 10.1021/ja4064052
65.
Ertem
,
M. Z.
,
Konezny
,
S. J.
,
Araujo
,
C. M.
, and
Batista
,
V. S.
,
2013
, “
Functional Role of Pyridinium During Aqueous Electrochemical Reduction of CO2 on Pt(111)
,”
J. Phys. Chem. Lett.
,
4
(
5
), pp.
745
748
. 10.1021/jz400183z
66.
Portenkirchner
,
E.
,
Enengl
,
C.
,
Enengl
,
S.
,
Hinterberger
,
G.
,
Schlager
,
S.
,
Apaydin
,
D.
,
Neugebauer
,
H.
,
Knör
,
G.
, and
Sariciftci
,
N. S.
,
2014
, “
A Comparison of Pyridazine and Pyridine as Electrocatalysts for the Reduction of Carbon Dioxide to Methanol
,”
ChemElectroChem
,
1
(
9
), pp.
1543
1548
. 10.1002/celc.201402132
67.
Lee
,
J. H. Q.
,
Lauw
,
S. J. L.
, and
Webster
,
R. D.
,
2016
, “
The Electrochemical Reduction of Carbon Dioxide (CO2) to Methanol in the Presence of Pyridoxine (Vitamin B6)
,”
Electrochem. Commun.
,
64
, pp.
69
73
. 10.1016/j.elecom.2016.01.016
68.
Yang
,
H.-P.
,
Qin
,
S.
,
Wang
,
H.
, and
Lu
,
J.-X.
,
2015
, “
Organically Doped Palladium: A Highly Efficient Catalyst for Electroreduction of CO2 to Methanol
,”
Green Chem.
,
17
(
12
), pp.
5144
5148
. 10.1039/C5GC01504A
69.
Yang
,
H.-P.
,
Qin
,
S.
,
Yue
,
Y.-N.
,
Liu
,
L.
,
Wang
,
H.
, and
Lu
,
J.-X.
,
2016
, “
Entrapment of a Pyridine Derivative Within a Copper–Palladium Alloy: A Bifunctional Catalyst for Electrochemical Reduction of CO2 to Alcohols With Excellent Selectivity and Reusability
,”
Catal. Sci. Technol.
,
6
(
17
), pp.
6490
6494
. 10.1039/C6CY00971A
70.
Dridi
,
H.
,
Comminges
,
C.
,
Morais
,
C.
,
Meledje
,
J. C.
,
Kokoh
,
K. B.
,
Costentin
,
C.
, and
Savéant
,
J. M.
,
2017
, “
Catalysis and Inhibition in the Electrochemical Reduction of CO2 on Platinum in the Presence of Protonated Pyridine. New Insights into Mechanisms and Products
,”
J. Am. Chem. Soc.
,
139
(
39
), pp.
13922
13928
. 10.1021/jacs.7b08028
71.
Costentin
,
C.
,
Savéant
,
J.-M.
, and
Tard
,
C.
,
2018
, “
Catalysis of CO2 Electrochemical Reduction by Protonated Pyridine and Similar Molecules. Useful Lessons From a Methodological Misadventure
,”
ACS Energy Lett.
,
3
(
3
), pp.
695
703
. 10.1021/acsenergylett.8b00008
72.
Jiwanti
,
P. K.
,
Natsui
,
K.
,
Nakata
,
K.
, and
Einaga
,
Y.
,
2016
, “
Selective Production of Methanol by the Electrochemical Reduction of CO2 on Boron-Doped Diamond Electrodes in Aqueous Ammonia Solution
,”
RSC Adv.
,
6
(
104
), pp.
102214
102217
. 10.1039/C6RA20466J
73.
Liu
,
Y.
,
Zhang
,
Y.
,
Cheng
,
K.
,
Quan
,
X.
,
Fan
,
X.
,
Su
,
Y.
,
Chen
,
S.
,
Zhao
,
H.
,
Zhang
,
Y.
,
Yu
,
H.
, and
Hoffmann
,
M. R.
,
2017
, “
Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron- and Nitrogen-Co-Doped Nanodiamond
,”
Angew. Chem. Int. Ed.
,
56
(
49
), pp.
15607
15611
. 10.1002/anie.201706311
74.
Chaban
,
V. V.
,
Voroshylova
,
I. V.
,
Kalugin
,
O. N.
, and
Prezhdo
,
O. V.
,
2012
, “
Acetonitrile Boosts Conductivity of Imidazolium Ionic Liquids
,”
J. Phys. Chem. B
,
116
(
26
), pp.
7719
7727
. 10.1021/jp3034825
75.
Sun
,
X.
,
Zhu
,
Q.
,
Kang
,
X.
,
Liu
,
H.
,
Qian
,
Q.
,
Zhang
,
Z.
, and
Han
,
B.
,
2016
, “
Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol
,”
Angew. Chem. Int. Ed.
,
55
(
23
), pp.
6771
6775
. 10.1002/anie.201603034
76.
Lu
,
L.
,
Sun
,
X.
,
Ma
,
J.
,
Yang
,
D.
,
Wu
,
H.
,
Zhang
,
B.
,
Zhang
,
J.
, and
Han
,
B.
,
2018
, “
Highly Efficient Electroreduction of CO2 to Methanol on Palladium–Copper Bimetallic Aerogels
,”
Angew. Chem. Int. Ed.
,
57
(
43
), pp.
14149
14153
. 10.1002/anie.201808964
77.
Huang
,
Y.
,
Deng
,
Y.
,
Handoko
,
A. D.
,
Goh
,
G. K. L.
, and
Yeo
,
B. S.
,
2018
, “
Rational Design of Sulfur-Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate
,”
ChemSusChem
,
11
(
1
), pp.
320
326
. 10.1002/cssc.201701314
78.
Garg
,
G.
, and
Basu
,
S.
,
2015
, “
Studies on Degradation of Copper Nano Particles in Cathode for CO2 Electrolysis to Organic Compounds
,”
Electrochim. Acta
,
177
, pp.
359
365
. 10.1016/j.electacta.2015.03.161
79.
Marepally
,
B. C.
,
Ampelli
,
C.
,
Genovese
,
C.
,
Tavella
,
F.
,
Veyre
,
L.
,
Quadrelli
,
E. A.
,
Perathoner
,
S.
, and
Centi
,
G.
,
2017
, “
Role of Small Cu Nanoparticles in the Behaviour of Nanocarbon-Based Electrodes for the Electrocatalytic Reduction of CO2
,”
J. CO2 Util.
,
21
, pp.
534
542
. 10.1016/j.jcou.2017.08.008
80.
Albo
,
J.
,
Sáez
,
A.
,
Solla-Gullón
,
J.
,
Montiel
,
V.
, and
Irabien
,
A.
,
2015
, “
Production of Methanol From CO2 Electroreduction at Cu2O and Cu2O/ZnO-Based Electrodes in Aqueous Solution
,”
Appl. Catal., B
,
176–177
, pp.
709
717
. 10.1016/j.apcatb.2015.04.055
81.
Kortlever
,
R.
,
Shen
,
J.
,
Schouten
,
K. J.
,
Calle-Vallejo
,
F.
, and
Koper
,
M. T.
,
2015
, “
Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide
,”
J. Phys. Chem. Lett.
,
6
(
20
), pp.
4073
4082
. 10.1021/acs.jpclett.5b01559
82.
Nie
,
X.
,
Esopi
,
M. R.
,
Janik
,
M. J.
, and
Asthagiri
,
A.
,
2013
, “
Selectivity of CO2 Reduction on Copper Electrodes: The Role of the Kinetics of Elementary Steps
,”
Angew. Chem. Int. Ed.
,
52
(
9
), pp.
2459
2462
. 10.1002/anie.201208320
83.
Peterson
,
A. A.
,
Abild-Pedersen
,
F.
,
Studt
,
F.
,
Rossmeisl
,
J.
, and
Nørskov
,
J. K.
,
2010
, “
How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels
,”
Energy Environ. Sci.
,
3
(
9
), pp.
1311
1315
. 10.1039/c0ee00071j
84.
Nie
,
X.
,
Luo
,
W.
,
Janik
,
M. J.
, and
Asthagiri
,
A.
,
2014
, “
Reaction Mechanisms of CO2 Electrochemical Reduction on Cu(111) Determined With Density Functional Theory
,”
J. Catal.
,
312
, pp.
108
122
. 10.1016/j.jcat.2014.01.013
85.
Hansen
,
H. A.
,
Montoya
,
J. H.
,
Zhang
,
Y.-J.
,
Shi
,
C.
,
Peterson
,
A. A.
, and
Nørskov
,
J. K.
,
2013
, “
Electroreduction of Methanediol on Copper
,”
Catal. Lett.
,
143
(
7
), pp.
631
635
. 10.1007/s10562-013-1023-5
86.
Hirunsit
,
P.
,
Soodsawang
,
W.
, and
Limtrakul
,
J.
,
2015
, “
CO2 Electrochemical Reduction to Methane and Methanol on Copper-Based Alloys: Theoretical Insight
,”
J. Phys. Chem. C
,
119
(
15
), pp.
8238
8249
. 10.1021/acs.jpcc.5b01574
87.
Back
,
S.
,
Kim
,
H.
, and
Jung
,
Y.
,
2015
, “
Selective Heterogeneous CO2 Electroreduction to Methanol
,”
ACS Catal.
,
5
(
2
), pp.
965
971
. 10.1021/cs501600x
88.
Greeley
,
J.
, and
Mavrikakis
,
M.
,
2004
, “
Alloy Catalysts Designed From First Principles
,”
Nat. Mater.
,
3
(
11
), pp.
810
815
. 10.1038/nmat1223
89.
Lee
,
J. H. Q.
,
Lauw
,
S. J. L.
, and
Webster
,
R. D.
,
2017
, “
“Corrigendum to “The Electrochemical Reduction of Carbon Dioxide (CO2) to Methanol in the Presence of Pyridoxine (Vitamin B6)” [Electrochem. Commun. 64 (2016) 69–73]
,”
Electrochem. Commun.
,
74
, p.
57
. 10.1016/j.elecom.2016.12.007
90.
Clark
,
E. L.
,
Hahn
,
C.
,
Jaramillo
,
T. F.
, and
Bell
,
A. T.
,
2017
, “
Electrochemical CO2 Reduction Over Compressively Strained CuAg Surface Alloys With Enhanced Multi-Carbon Oxygenate Selectivity
,”
J. Am. Chem. Soc.
,
139
(
44
), pp.
15848
15857
. 10.1021/jacs.7b08607
91.
Aeshala
,
L. M.
,
Uppaluri
,
R.
, and
Verma
,
A.
,
2014
, “
Electrochemical Conversion of CO2 to Fuels: Tuning of the Reaction Zone Using Suitable Functional Groups in a Solid Polymer Electrolyte
,”
Phys. Chem. Chem. Phys.
,
16
(
33
), pp.
17588
17594
. 10.1039/C4CP02389G
You do not currently have access to this content.