Abstract

Lithium-ion (Li-ion) batteries have been considered the most promising power source for road transportation. However, the performance and lifespan of Li-ion batteries are strongly dependent on the working temperature. The optimal working temperature is usually within a narrow range, from 25 to 40 °C, and the non-uniformity is usually required to be lower than 5 °C. Therefore, the industry is seeking a thermal management system that is lightweight, simple-structure, energy-saving, and environmentally friendly. Air-cooling, liquid-cooling, and phase-change material (PCM) are the three most common cooling methods in the literature. In this study, a new concept of hybrid-cooling which utilizes all the three cooling methods is proposed. The concept can use either normal tap water or the condensate from a vehicle’s air-conditioner as the coolant source. Also, the coolants can be released back to the ambient environment instead of a coolant recirculation system to reduce weight and complexity. The concept was studied in detail experimentally using the 26,650 Li-ion batteries. The results indicate that the proposed hybrid-cooling concept reduced the maximum surface temperature by about 83%, 70%, and 57% compared with the other three cooling methods: the no-cooling, air-cooling, and water-cooling test results, respectively. Additionally, the concept successfully maintained the temperature uniformity below the recommended 5 °C.

References

1.
Lanz
,
A.
,
Heffel
,
J.
, and
Messer
,
C.
,
2001
,
Hydrogen Fuel Cell Engines and Related Technologies
,
College of the Desert, Energy Technology Training Center
,
Palm Desert, CA
.
2.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renew. Sustain. Energy Rev.
,
15
(
9
), pp.
4554
4571
. 10.1016/j.rser.2011.07.096
3.
Jaguemont
,
J.
,
Boulon
,
L.
, and
Dubé
,
Y.
,
2016
, “
A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures
,”
Appl. Energy
,
164
, pp.
99
114
. 10.1016/j.apenergy.2015.11.034
4.
Zhao
,
R.
,
Zhang
,
S.
,
Liu
,
J.
, and
Gu
,
J.
,
2015
, “
A Review of Thermal Performance Improving Methods of Lithium Ion Battery: Electrode Modification and Thermal Management System
,”
J. Power Sources
,
299
, pp.
557
577
. 10.1016/j.jpowsour.2015.09.001
5.
Saw
,
L.
,
Ye
,
Y.
, and
Tay
,
A.
,
2013
, “
Electrochemical–Thermal Analysis of 18650 Lithium Iron Phosphate Cell
,”
Energy Convers. Manage.
,
75
, pp.
162
174
. 10.1016/j.enconman.2013.05.040
6.
Wang
,
T.
,
Tseng
,
K. J.
,
Zhao
,
J.
, and
Wei
,
Z.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energy
,
134
, pp.
229
238
. 10.1016/j.apenergy.2014.08.013
7.
Yang
,
N.
,
Zhang
,
X.
,
Li
,
G.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
. 10.1016/j.applthermaleng.2015.01.049
8.
Xu
,
J.
,
Lan
,
C.
,
Qiao
,
Y.
, and
Ma
,
Y.
,
2017
, “
Prevent Thermal Runaway of Lithium-Ion Batteries With Minichannel Cooling
,”
Appl. Therm. Eng.
,
110
, pp.
883
890
. 10.1016/j.applthermaleng.2016.08.151
9.
Gu
,
W.
, and
Wang
,
C.
,
2000
, “
Thermal-Electrochemical Modeling of Battery Systems
,”
J. Electrochem. Soc.
,
147
(
8
), p.
2910
. 10.1149/1.1393625
10.
Zhao
,
C.
,
Kang
,
W.
,
Zhao
,
S.
, and
Shen
,
Q.
,
2011
, “
Hydrazine–Hydrothermal Synthesis of Pure-Phase O-LiMnO2 for Lithium-Ion Battery Application
,”
Micro Nano Lett.
,
6
(
10
), p.
820
. 10.1049/mnl.2011.0378
11.
Julien
,
C.
,
Mauger
,
A.
,
Zaghib
,
K.
, and
Groult
,
H.
,
2014
, “
Comparative Issues of Cathode Materials for Li-Ion Batteries
,”
Inorganics
,
2
(
1
), pp.
132
154
. 10.3390/inorganics2010132
12.
Shan
,
C.
,
Guanghui
,
G.
, and
Fangfang
,
L.
,
2013
, “
Study on the Performance of LiMn2O4 Using Spent Zn–Mn Batteries as Manganese Source
,”
J. Solid State Electrochem.
,
18
(
6
), pp.
1495
1502
. 10.1007/s10008-013-2311-0
13.
,
2018
, “
Types of Battery Cells; Cylindrical Cell, Button Cell, Pouch Cell
,” http://batteryuniversity.com/learn/article/types_of_battery_cells, Accessed Jan. 3, 2018.
14.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2017
, “
Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries
,”
Energies
,
10
(
8
), p.
1157
. 10.3390/en10081157
15.
Tong
,
W.
,
Somasundaram
,
K.
,
Birgersson
,
E.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2016
, “
Thermo-Electrochemical Model for Forced Convection Air Cooling of a Lithium-Ion Battery Module
,”
Appl. Therm. Eng.
,
99
, pp.
672
682
. 10.1016/j.applthermaleng.2016.01.050
16.
Liu
,
Y.
,
Ouyang
,
C.
,
Jiang
,
Q.
, and
Liang
,
B.
,
2015
, “
Design and Parametric Optimization of Thermal Management of Lithium-Ion Battery Module With Reciprocating Air-Flow
,”
J. Cent. South Univ.
,
22
(
10
), pp.
3970
3976
. 10.1007/s11771-015-2941-8
17.
Park
,
H.
,
2013
, “
A Design of Air Flow Configuration for Cooling Lithium-Ion Battery in Hybrid Electric Vehicles
,”
J. Power Sources
,
239
, pp.
30
36
. 10.1016/j.jpowsour.2013.03.102
18.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A. O.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium-Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
. 10.1016/j.apenergy.2016.05.122
19.
Sun
,
H.
, and
Dixon
,
R.
,
2014
, “
Development of Cooling Strategy for an Air-Cooled Lithium-Ion Battery Pack
,”
J. Power Sources
,
272
, pp.
404
414
. 10.1016/j.jpowsour.2014.08.107
20.
Liu
,
Z.
,
Wang
,
Y.
, and
Zhang
,
J.
,
2014
, “
Shortcut Computation for the Thermal Management of a Large Air-Cooled Battery Pack
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
445
452
. 10.1016/j.applthermaleng.2014.02.040
21.
He
,
F.
, and
Ma
,
L.
,
2015
, “
Thermal Management of Batteries Employing Active Temperature Control and Reciprocating Cooling Flow
,”
Int. J. Heat Mass Transfer
,
83
, pp.
164
172
. 10.1016/j.ijheatmasstransfer.2014.11.079
22.
Fan
,
L.
,
Khodadadi
,
J. M.
, and
Pesaran
,
A. A.
,
2013
, “
A Parametric Study on Thermal Management of an Air-Cooled Lithium-Ion Battery Module for Plug-In Hybrid Electric Vehicles
,”
J. Power Sources
,
238
, pp.
301
312
. 10.1016/j.jpowsour.2013.03.050
23.
Sasmito
,
A.
,
Birgersson
,
E.
, and
Mujumdar
,
A.
,
2012
, “
A Novel Flow Reversal Concept for Improved Thermal Management in Polymer Electrolyte Fuel Cell Stacks
,”
Int. J. Therm. Sci.
,
54
, pp.
242
252
. 10.1016/j.ijthermalsci.2011.11.020
24.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
. 10.1016/j.jpowsour.2011.02.076
25.
Yu
,
K.
,
Yang
,
X.
,
Cheng
,
Y.
, and
Li
,
C.
,
2014
, “
Thermal Analysis and Two-Directional Air Flow Thermal Management for Lithium-Ion Battery Pack
,”
J. Power Sources
,
270
, pp.
193
200
. 10.1016/j.jpowsour.2014.07.086
26.
Xie
,
J.
,
Zang
,
M.
,
Wang
,
S.
, and
Ge
,
Z.
,
2017
, “
Optimization Investigation on the Liquid Cooling Heat Dissipation Structure for the Lithium-Ion Battery Package in Electric Vehicles
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
231
(
13
), pp.
1735
1750
.
27.
Leroux
,
G.
,
Mendes
,
M.
,
Stephan
,
L.
,
Pierrès
,
N. L.
, and
Wurtz
,
E.
,
2015
, “
An Innovative Cooling System Based on Evaporation From a Porous Tank
,”
14th Conference of International Building Performance Simulation Association
,
Hyderabad, India
,
Dec. 7–9
, pp.
2453
2460
.
28.
Saw
,
L. H.
,
Tay
,
A. A. O.
, and
Zhang
,
L. W.
,
2015
, “
Thermal Management of Lithium-Ion Battery Pack With Liquid Cooling
,”
31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)
,
San Jose, CA
,
Mar. 15–19
.
29.
Panchal
,
S.
,
Mathew
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2018
, “
Electrochemical Thermal Modeling and Experimental Measurements of 18650 Cylindrical Lithium-Ion Battery During Discharge Cycle for an EV
,”
Appl. Therm. Eng.
,
135
, pp.
123
132
. 10.1016/j.applthermaleng.2018.02.046
30.
Panchal
,
S.
,
Haji Akhoundzadeh
,
M.
,
Raahemifar
,
K.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2019
, “
Heat and Mass Transfer Modeling and Investigation of Multiple LiFePO4/Graphite Batteries in a Pack at Low C-Rates With Water-Cooling
,”
Int. J. Heat Mass Transfer
,
135
, pp.
368
377
. 10.1016/j.ijheatmasstransfer.2019.01.076
31.
Lan
,
C.
,
Xu
,
J.
,
Qiao
,
Y.
, and
Ma
,
Y.
,
2016
, “
Thermal Management for High Power Lithium-Ion Battery by Minichannel Aluminum Tubes
,”
Appl. Therm. Eng.
,
101
, pp.
284
292
. 10.1016/j.applthermaleng.2016.02.070
32.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manage.
,
103
, pp.
157
165
. 10.1016/j.enconman.2015.06.056
33.
He
,
F.
,
Akram Ams
,
A.
,
Roosien
,
Y.
,
Tao
,
W.
,
Geist
,
B.
, and
Singh
,
K.
,
2017
,
Reduced-Order Thermal Modeling of Liquid-Cooled Lithium-Ion Battery Pack for EVs and HEVs
,
Chrysler Tech Center
,
MI
.
34.
Kizilel
,
R.
,
Sabbah
,
R.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2009
, “
An Alternative Cooling System to Enhance the Safety of Li-Ion Battery Packs
,”
J. Power Sources
,
194
(
2
), pp.
1105
1112
. 10.1016/j.jpowsour.2009.06.074
35.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium-Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
. 10.1016/j.apenergy.2015.03.080
36.
Fathabadi
,
H.
,
2014
, “
High Thermal Performance Lithium-Ion Battery Pack Including Hybrid Active-Passive Thermal Management System for Using in Hybrid/Electric Vehicles
,”
Energy
,
70
, pp.
529
538
. 10.1016/j.energy.2014.04.046
37.
Shah
,
K.
,
McKee
,
C.
,
Chalise
,
D.
, and
Jain
,
A.
,
2016
, “
Experimental and Numerical Investigation of Core Cooling of Li-Ion Cells Using Heat Pipes
,”
Energy
,
113
, pp.
852
860
. 10.1016/j.energy.2016.07.076
38.
Wei
,
Y.
, and
Agelin-Chaab
,
M.
,
2018
, “
Experimental Investigation of a Novel Hybrid Cooling Method for Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
136
, pp.
375
387
. 10.1016/j.applthermaleng.2018.03.024
39.
Smith
,
K.
, and
Wang
,
C.
,
2006
, “
Power and Thermal Characterization of a Lithium-Ion Battery Pack for Hybrid-Electric Vehicles
,”
J. Power Sources
,
160
(
1
), pp.
662
673
. 10.1016/j.jpowsour.2006.01.038
40.
Abdul-Quadir
,
Y.
,
Laurila
,
T.
,
Karppinen
,
J.
,
Jalkanen
,
K.
,
Vuorilehto
,
K.
,
Skogström
,
L.
, and
Paulasto-Kröckel
,
M.
,
2014
, “
Heat Generation in High Power Prismatic Li-Ion Battery Cell With LiMnNiCoO2 cathode Material
,”
Int. J. Energy Res.
,
38
(
11
), pp.
1424
1437
. 10.1002/er.3156
41.
Liu
,
G.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
, and
Han
,
X.
,
2014
, “
Analysis of the Heat Generation of Lithium-Ion Battery During Charging and Discharging Considering Different Influencing Factors
,”
J. Therm. Anal. Calorim.
,
116
(
2
), pp.
1001
1010
. 10.1007/s10973-013-3599-9
42.
Turza
,
R.
, and
Füri
,
B.
,
2017
, “
Experimental Measurements of the Water Evaporation Rate of a Physical Model
,”
Slovak J. Civ. Eng.
,
25
(
1
), p.
1
. 10.1515/sjce-2017-0003
43.
,
2017
, “
Efest IMR 26650 5000mAh 45A Flat Top Battery—Batteries—EFEST
,” http://www.efestpower.com/index.php?ac=article&at=read&did=448, Accessed January 25, 2019.
44.
SPI Corp.
,
2017
, “
XP 5000 Radiometric Infrared Camera
,” https://www.x20.org/product/raz-ir-pro-xp-5000-infrared-camera/, Accessed January 25, 2019.
45.
,
2017
, “
Thermocouple Accuracy Table by Type and Temperature—National Instruments
,” http://digital.ni.com/public.nsf/websearch/BA5B756B76BB595A862579B3008168C0?opendocument&Submitted&&node=133020_US, Accessed January 25, 2019.
46.
Moffat
,
R.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
47.
Mahamud
,
R.
, and
Park
,
C.
,
2013
, “
Spatial-Resolution, Lumped-Capacitance Thermal Model for Cylindrical Li-Ion Batteries Under High Biot Number Conditions
,”
Appl. Math. Model.
,
37
(
5
), pp.
2787
2801
. 10.1016/j.apm.2012.06.023
48.
Wu
,
B.
,
Yufit
,
V.
,
Marinescu
,
M.
,
Offer
,
G.
,
Martinez-Botas
,
R.
, and
Brandon
,
N.
,
2013
, “
Coupled Thermal–Electrochemical Modelling of Uneven Heat Generation in Lithium-Ion Battery Packs
,”
J. Power Sources
,
243
, pp.
544
554
. 10.1016/j.jpowsour.2013.05.164
You do not currently have access to this content.