The performance of yttria-stabilized zirconia (YSZ)–samaria-doped ceria (SDC) dual layer electrolyte anode-supported solid oxide fuel cell (AS-SOFC) was investigated. Tape-casting, lamination, and co-sintering of the NiO–YSZ anode followed by wet powder spraying of the SDC buffer layer and BSCF cathode was proposed for fabrication of these cells as an effective means of reducing the number of sintering stages required. The AS-SOFC showed a significant fuel cell performance of ∼1.9 W cm−2 at 800 °C. The fuel cell performance varies significantly with the sintering temperature of the SDC buffer layer. An optimal buffer layer sintering temperature of 1350 °C occurs due to a balance between the YSZ–SDC contact and densification at low sintering temperature and reactions between YSZ and SDC at high sintering temperatures. At high sintering temperatures, the reactions between YSZ and SDC have a detrimental effect on the fuel cell performance resulting in no power at a sintering temperature of 1500 °C.

References

1.
Steele
,
B. C. H.
, and
Heinzel
,
A.
,
2001
, “
Materials for Fuel-Cell Technologies
,”
Nature
,
414
(
6861
), pp.
345
352
.
2.
Gorte
,
R. J.
,
2005
, “
Recent Developments Towards Commercialization of Solid Oxide Fuel Cells
,”
AIChE J.
,
51
(
9
), pp.
2377
2381
.
3.
de Souza
,
S.
,
Visco
,
S. J.
, and
De Jonghe
,
L. C.
,
1997
, “
Reduced-Temperature Solid Oxide Fuel Cell Based on YSZ Thin-Film Electrolyte
,”
J. Electrochem. Soc.
,
144
(
3
), pp.
L35
L37
.
4.
Shao
,
Z.
,
Zhou
,
W.
, and
Zhu
,
Z.
,
2012
, “
Advanced Synthesis of Materials for Intermediate-Temperature Solid Oxide Fuel Cells
,”
Prog. Mater. Sci.
,
57
(
4
), pp.
804
874
.
5.
Zhao
,
F.
, and
Virkar
,
A. V.
,
2005
, “
Dependence of Polarization in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters
,”
J. Power Sources
,
141
(
1
), pp.
79
95
.
6.
Lu
,
Z. G.
,
Zhou
,
X. D.
,
Fisher
,
D.
,
Templeton
,
J.
,
Stevenson
,
J.
,
Wu
,
N. J.
, and
Ignatiev
,
A.
,
2010
, “
Enhanced Performance of an Anode-Supported YSZ Thin Electrolyte Fuel Cell With a Laser-Deposited Sm0.2Ce0.8O1.9 Interlayer
,”
Electrochem. Commun.
,
12
(
2
), pp.
179
182
.
7.
Shi
,
H.
,
Ran
,
R.
, and
Shao
,
Z.
,
2012
, “
Wet Powder Spraying Fabrication and Performance Optimization of IT-SOFCs With Thin-Film ScSZ Electrolyte
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
1125
1132
.
8.
Shao
,
Z.
,
Haile
,
S. M.
,
Ahn
,
J.
,
Ronney
,
P. D.
,
Zhan
,
Z.
, and
Barnett
,
S. A.
,
2005
, “
A Thermally Self-Sustained Micro Solid-Oxide Fuel-Cell Stack With High Power Density
,”
Nature
,
435
(
7043
), pp.
795
798
.
9.
Tsoga
,
A.
,
Gupta
,
A.
,
Naoumidis
,
A.
, and
Nikolopoulos
,
P.
,
2000
, “
Gadolinia-Doped Ceria and Yttria Stabilized Zirconia Interfaces: Regarding Their Application for SOFC Technology
,”
Acta Mater.
,
48
(
18–19
), pp.
4709
4714
.
10.
Jiang
,
Z.
,
Xia
,
C.
, and
Chen
,
F.
,
2010
, “
Nano-Structured Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells Via an Infiltration/Impregnation Technique
,”
Electrochim. Acta
,
55
(
11
), pp.
3595
3605
.
11.
Petric
,
A.
,
Huang
,
P.
, and
Tietz
,
F.
,
2000
, “
Evaluation of La-Sr-Co-Fe-O Perovskites for Solid Oxide Fuel Cells and Gas Separation Membranes
,”
Solid State Ionics
,
135
(
1–4
), pp.
719
725
.
12.
Szász
,
J.
,
Wankmüller
,
F.
,
Wilde
,
V.
,
Störmer
,
H.
,
Gerthsen
,
D.
,
Menzler
,
N. H.
, and
Ivers-Tiffée
,
E.
,
2015
, “
High-Performance Cathode/Electrolyte Interfaces for SOFC
,”
ECS Trans.
,
68
(
1
), pp.
763
771
.
13.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Tietz
,
F.
, and
Stöver
,
D.
,
2006
, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part II. Influence of the CGO Interlayer
,”
Solid State Ionics
,
177
(
19–25
), pp.
2103
2107
.
14.
Uhlenbruck
,
S.
,
Moskalewicz
,
T.
,
Jordan
,
N.
,
Penkalla
,
H.-J.
, and
Buchkremer
,
H. P.
,
2009
, “
Element Interdiffusion at Electrolyte-Cathode Interfaces in Ceramic High-Temperature Fuel Cells
,”
Solid State Ionics
,
180
(
4–5
), pp.
418
423
.
15.
Jordan
,
N.
,
Assenmacher
,
W.
,
Uhlenbruck
,
S.
,
Haanappel
, V
. A. C.
,
Buchkremer
,
H. P.
,
Stöver
,
D.
, and
Mader
,
W.
,
2008
, “
Ce0.8Gd0.2O2-δ Protecting Layers Manufactured by Physical Vapor Deposition for IT-SOFC
,”
Solid State Ionics
,
179
(
21–26
), pp.
919
923
.
16.
Constantin
,
G.
,
Rossignol
,
C.
,
Briois
,
P.
,
Billard
,
A.
,
Dessemond
,
L.
, and
Djurado
,
E.
,
2013
, “
Efficiency of a Dense Thin CGO Buffer Layer for Solid Oxide Fuel Cell Operating at Intermediate Temperature
,”
Solid State Ionics
,
249–250
, pp.
98
104
.
17.
Moreno
,
B.
,
Fernández-González
,
R.
,
Jurado
,
J. R.
,
Makradi
,
A.
,
Nuñez
,
P.
, and
Chinarro
,
E.
,
2014
, “
Fabrication and Characterization of Ceria-Based Buffer Layers for Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
39
(
10
), pp.
5433
5439
.
18.
Charojrochkul
,
S.
,
Choy
,
K.-L.
, and
Steele
,
B. C. H.
,
1999
, “
Cathode/Electrolyte Systems for Solid Oxide Fuel Cells Fabricated Using Flame Assisted Vapour Deposition Technique
,”
Solid State Ionics
,
121
(
1–4
), pp.
107
113
.
19.
Martínez-Amesti
,
A.
,
Larrañaga
,
A.
,
Rodríguez-Martínez
,
L. M.
,
,
M. L.
,
Pizarro
,
J. L.
,
Laresgoiti
,
A.
, and
Arriortua
,
M. I.
,
2009
, “
Chemical Compatibility Between YSZ and SDC Sintered at Different Atmospheres for SOFC Applications
,”
J. Power Sources
,
192
(
1
), pp.
151
157
.
20.
Wang
,
Z.
,
Huang
,
X.
,
Lv
,
Z.
,
Zhang
,
Y.
,
Wei
,
B.
,
Zhu
,
X.
,
Wang
,
Z.
, and
Liu
,
Z.
,
2015
, “
Preparation and Performance of Solid Oxide Fuel Cells With YSZ/SDC Bilayer Electrolyte
,”
Ceram. Int.
,
41
(
3
), pp.
4410
4415
.
21.
Nguyen
,
T. L.
,
Kobayashi
,
K.
,
Honda
,
T.
,
Iimura
,
Y.
,
Kato
,
K.
,
Neghisi
,
A.
,
Nozaki
,
K.
,
Tappero
,
F.
,
Sasaki
,
K.
,
Shirahama
,
H.
,
Ota
,
K.
,
Dokiya
,
M.
, and
Kato
,
T.
,
2004
, “
Preparation and Evaluation of Doped Ceria Interlayer on Supported Stabilized Zirconia Electrolyte SOFCs by Wet Ceramic Processes
,”
Solid State Ionics
,
174
(
1–4
), pp.
163
174
.
22.
Simner
,
S. P.
,
Bonnett
,
J. F.
,
Canfield
,
N. L.
,
Meinhardt
,
K. D.
,
Shelton
,
J. P.
,
Sprenkle
,
V. L.
, and
Stevenson
,
J. W.
,
2003
, “
Development of Lanthanum Ferrite SOFC Cathodes
,”
J. Power Sources
,
113
(
1
), pp.
1
10
.
23.
Mesguich
,
D.
,
Aymonier
,
C.
,
Bassat
,
J. M.
,
Mauvy
,
F.
,
You
,
E.
, and
Watkins
,
J. J.
,
2011
, “
Low Temperature Deposition of Undoped Ceria Thin Films in scCO2 as Improved Interlayers for IT-SOFC
,”
Chem. Mater.
,
23
(
24
), pp.
5323
5330
.
24.
Oh
,
E-O.
,
Whang
,
C. M.
,
Lee
,
Y. R.
,
Park
,
S. Y.
,
Prasad
,
D. H.
,
Yoon
,
K. J.
,
Son
,
J. W.
,
Lee
,
J. H.
, and
Lee
,
H. W.
,
2014
, “
Extremely Thin Bilayer Electrolyte for Solid Oxide Fuel Cells (SOFCs) Fabricated by Chemical Solution Deposition (CSD)
,”
Adv. Mater.
,
24
, pp.
3373
3377
.
25.
Li
,
C.
,
Shi
,
H.
,
Ran
,
R.
,
Su
,
C.
, and
Shao
,
Z.
,
2013
, “
Thermal Inkjet Printing of Thin-Film Electrolytes and Buffering Layers for Solid Oxide Fuel Cells With Improved Performance
,”
Int. J. Hydrogen Energy
,
38
(
22
), pp.
9310
9319
.
26.
Chen
,
D.
,
Yang
,
G.
,
Shao
,
Z.
, and
Ciucci
,
F.
,
2014
, “
Nanoscaled Sm-Doped CeO2 Buffer Layers for Intermediate-Temperature Solid Oxide Fuel Cells
,”
Electrochem. Commun.
,
35
, pp.
131
134
.
27.
Ruder
,
A.
,
Buchkremer
,
H. P.
,
Jansen
,
H.
,
Malléner
,
W.
, and
Stöver
,
D.
,
1992
, “
Wet Powder Spraying—A Process for the Production of Coatings
,”
Surf. Coat. Technol.
,
53
(
1
), pp.
71
74
.
28.
Zhou
,
W.
,
Shi
,
H.
,
Ran
,
R.
,
Cai
,
R.
,
Shao
,
Z.
, and
Jin
,
W.
,
2008
, “
Fabrication of an Anode-Supported Yttria-Stabilized Zirconia Thin Film for Solid-Oxide Fuel Cells Via Wet Powder Spraying
,”
J. Power Sources
,
184
(
1
), pp.
229
237
.
29.
Shi
,
H.
,
Zhou
,
W.
,
Ran
,
R.
, and
Shao
,
Z.
,
2010
, “
Comparative Study of Doped Ceria Thin-Film Electrolytes Prepared by Wet Powder Spraying With Powder Synthesized Via Two Techniques
,”
J. Power Sources
,
195
(
2
), pp.
393
401
.
30.
Kao
,
W.-X.
,
Lee
,
M.-C.
,
Lin
,
T.-N.
,
Wang
,
C.-H.
, and
Chang
,
Y.-C.
,
2010
, “
Fabrication and Characterization of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ—Gadolinia-Doped Ceria Cathode for an Anode-Supported Solid-Oxide Fuel Cell
,”
J. Power Sources
,
195
(
8
), pp.
2220
2223
.
31.
Will
,
J.
,
Mitterdorfer
,
A.
,
Kleinlogel
,
C.
,
Perednis
,
D.
, and
Gauckler
,
L. J.
,
2000
, “
Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells
,”
Solid State Ionics
,
131
(
1–2
), pp.
79
96
.
32.
Song
,
J.-H.
,
Park
,
S.-I.
,
Lee
,
J.-H.
, and
Kim
,
H.-S.
,
2008
, “
Fabrication Characteristics of an Anode-Supported Thin-Film Electrolyte Fabricated by the Tape Casting Method for IT-SOFC
,”
J. Mater. Process. Technol.
,
198
(
1–3
), pp.
414
418
.
33.
Martínez-Amesti
,
A.
,
Larrañaga
,
A.
,
Rodríguez-Martínez
,
L. M.
,
,
M. L.
,
Pizarro
,
J. L.
,
Laresgoiti
,
A.
, and
Arriortua
,
M. I.
,
2009
, “
Influence of SDC-YSZ Contact at Different Atmospheres in SOFC Operation and Processing Conditions
,”
J. Electrochem. Soc.
,
156
(
7
), pp.
B856
B861
.
34.
Duana
,
Z.
,
Yang
,
M.
,
Yan
,
A.
,
Hou
,
Z.
,
Dong
,
Y.
,
Chong
,
Y.
,
Cheng
,
M.
, and
Yang
,
W.
,
2006
, “
Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a Cathode for IT-SOFCs With a GDC Interlayer
,”
J. Power Sources
,
160
(
1
), pp.
57
64
.
35.
Wang
,
K.
,
Ran
,
R.
,
Zhou
,
W.
,
Gu
,
H.
,
Shao
,
Z.
, and
Ahn
,
J.
,
2008
, “
Properties and Performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ + Sm0.2Ce0.8O1.9 Composite Cathode
,”
J. Power Sources
,
179
(
1
), pp.
60
68
.
36.
Zhou
,
W.
,
Shao
,
Z.
, and
Jin
,
W.
,
2006
, “
Synthesis of Nanocrystalline Conducting Composite Oxide Based on a Non-Ion Selective Combined Complexing Process for Functional Applications
,”
J. Alloys Compd.
,
426
(
1–2
), pp.
368
374
.
37.
Ohrui
,
H.
,
Matushima
,
T.
, and
Hirai
,
T.
,
1998
, “
Performance of a Solid Oxide Fuel Cell Fabricated by Co-Firing
,”
J. Power Sources
,
71
(
1–2
), pp.
185
189
.
38.
Wang
,
K.
,
Zeng
,
P.
, and
Ahn
,
J.
,
2012
, “
Performance Investigation of YSZ-SDC Solid Oxide Fuel Cells
,”
ASME
Paper No. FuelCell2012-91429.
You do not currently have access to this content.