The characteristics of four new proton-conducting membranes, Nafion112/polyaniline composite membranes of various compositions, are studied for application as membrane separators in microbial fuel cells. The composite membranes are made by immersing Nafion-112 membranes in a solution containing aniline for different immersion times. The presence of polyaniline and sulfonic functional groups in the composite membranes is confirmed by means of Fourier transform infrared analysis while their surface roughness is determined by using atomic force microscopy prior to microbial fuel cell operation. Biofouling on the membranes' surface is also examined by using a scanning electron microscope after microbial fuel cell operation. The polarization curves and, hence, the power density curves are measured by varying the load's resistance. The power density of the microbial fuel cell with the Nafion/polyaniline composite membranes improves significantly as the amount of polyaniline increases because the interaction between sulfonic groups in the Nafion matrix and polyaniline in the polyaniline domains increases proton conductivity. However, it declines after more polyaniline is added because of less conjugated bonding of polyaniline and sulfonic acid groups for larger polyaniline domains in the Nafion matrix. The voltage overpotential is also smaller as the amount of polyaniline increases. Biofouling also decreases with increasing polyaniline in the Nafion/polyaniline composite membranes because they have smoother surfaces than Nafion membranes. The results show that the maximum power generated by the microbial fuel cells with Nafion112-polyaniline composite membrane is 124.03 mV m−2 with a current density of 454.66 mA m−2, which is approximately more than ninefold higher than that of microbial fuel cells with neat Nafion-112. It can be concluded that the power density of the microbial fuel cell can be increased by modifying the Nafion membrane separators with more conductive polymers that are less susceptible to biofouling to improve its proton conductivity.

References

1.
Choi
,
B. G.
,
Park
,
H.
,
Im
,
H. S.
,
Kim
,
Y. J.
, and
Hong
,
W. H.
,
2008
, “
Influence of Oxidation State of Polyaniline on Physicochemical and Transport Properties of Nafion/Polyaniline Composite Membrane for DMFC
,”
J. Membr. Sci.
,
324
(
1–2
), pp.
102
110
.10.1016/j.memsci.2008.06.061
2.
Falconett
,
I.
, and
Nagasaka
,
K.
,
2010
, “
Comparative Analysis of Support Mechanisms for Renewable Energy Technologies Using Probability Distributions
,”
Renew Energy
,
35
(
6
), pp.
1135
1144
.10.1016/j.renene.2009.11.019
3.
Ghasemi
,
M.
,
Shahgaldi
,
S.
,
Ismail
,
M.
,
Kim
,
B. H.
,
Yaakob
,
Z.
, and
Wan Daud
,
W. R.
,
2011
, “
Activated Carbon Nanofibers as an Alternative Cathode Catalyst to Platinum in a Two-Chamber Microbial Fuel Cell
,”
Int. J. Hydrogen Energy
,
36
(
21
), pp.
13746
13752
.10.1016/j.ijhydene.2011.07.118
4.
Mohan
,
Y.
,
Manoj Muthu Kumar
,
S.
, and
Das
,
D.
,
2008
, “
Electricity Generation Using Microbial Fuel Cells
,”
Int. J. Hydrogen Energy
,
33
(
1
), pp.
423
426
.10.1016/j.ijhydene.2007.07.027
5.
Zou
,
Y.
,
Xiang
,
C.
,
Yang
,
L.
,
Sun
,
L.-X.
,
Xu
,
F.
, and
Cao
,
Z.
,
2008
, “
A Mediatorless Microbial Fuel Cell Using Polypyrrole Coated Carbon Nanotubes Composite as Anode Material
,”
Int. J. Hydrogen Energy
,
33
(
18
), pp.
4856
4862
.10.1016/j.ijhydene.2008.06.061
6.
Kim
,
M.-S.
, and
Lee
,
Y.-J.
,
2010
, “
Optimization of Culture Conditions and Electricity Generation Using Geobacter Sulfurreducens in a Dual-Chambered Microbial Fuel-Cell
,”
Int. J. Hydrogen Energy
,
35
(
23
), pp.
13028
13034
.10.1016/j.ijhydene.2010.04.061
7.
Jana
,
P. S.
,
Behera
,
M.
, and
Ghangrekar
,
M. M.
,
2010
, “
Performance Comparison of Up-Flow Microbial Fuel Cells Fabricated Using Proton Exchange Membrane and Earthen Cylinder
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5681
5686
.10.1016/j.ijhydene.2010.03.048
8.
Veer Raghavulu
,
S.
,
Venkata Mohan
,
S.
,
Venkateswar Reddy
,
M.
,
Mohanakrishna
,
G.
, and
Sarma
,
P. N.
,
2009
, “
Behavior of Single Chambered Mediatorless Microbial Fuel Cell (MFC) at Acidophilic, Neutral and Alkaline Microenvironments During Chemical Wastewater Treatment
,”
Int. J. Hydrogen Energy
,
34
(
17
), pp.
7547
7554
.10.1016/j.ijhydene.2009.05.071
9.
Mohan
,
Y.
, and
Das
,
D.
,
2009
, “
Effect of Ionic Strength, Cation Exchanger and Inoculum Age on the Performance of Microbial Fuel Cells
,”
Int. J. Hydrogen Energy
,
34
(
17
), pp.
7542
7546
.10.1016/j.ijhydene.2009.05.101
10.
Rismani-Yazdi
,
H.
,
Carver
,
S. M.
,
Christy
,
A. D.
, and
Tuovinen
,
O. H.
,
2008
, “
Cathodic Limitations in Microbial Fuel Cells: An Overview
,”
J. Power Sources
,
180
(
2
), pp.
683
694
.10.1016/j.jpowsour.2008.02.074
11.
Tartakovsky
,
B.
,
Manuel
,
M. F.
,
Wang
,
H.
, and
Guiot
,
S.
,
2009
, “
High Rate Membrane-Less Microbial Electrolysis Cell for Continuous Hydrogen Production
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
672
677
.10.1016/j.ijhydene.2008.11.003
12.
Tiitu
,
M.
,
Talo
,
A.
,
Forsén
,
O.
, and
Ikkala
,
O.
,
2005
, “
Aminic Epoxy Resin Hardeners as Reactive Solvents for Conjugated Polymers: Polyaniline Base/Epoxy Composites for Anticorrosion Coatings
,”
Polymer
,
46
(
18
), pp.
6855
6861
.10.1016/j.polymer.2005.05.119
13.
Hirao
,
T.
,
2002
, “
Conjugated Systems Composed of Transition Metals and Redox-Active π-Conjugated Ligands
,”
Coor. Chem. Rev.
,
226
(
1–2
), pp.
81
91
.10.1016/S0010-8545(01)00436-2
14.
Yang
,
J.
,
Shen
,
P. K.
,
Varcoe
,
J.
, and
Wei
,
Z.
,
2009
, “
Nafion/Polyaniline Composite Membranes Specifically Designed to Allow Proton Exchange Membrane Fuel Cells Operation at Low Humidity
,”
J. Power Sources
,
189
(
2
), pp.
1016
1019
.10.1016/j.jpowsour.2008.12.076
15.
Tan
,
S.
, and
Bélanger
,
D.
,
2005
, “
Characterization and Transport Properties of Nafion/Polyaniline Composite Membranes
,”
J. Phys. Chem. B
,
109
(
49
), pp.
23480
23490
.10.1021/jp054724e
16.
Wong
,
P. C. Y.
,
Kwon
,
Y. N.
, and
Criddle
,
C. S.
,
2009
, “
Use of Atomic Force Microscopy and Fractal Geometry to Characterize the Roughness of Nano-, Micro-, and Ultrafiltration Membranes
,”
J. Membr. Sci.
,
340
(
1–2
), pp.
117
132
.10.1016/j.memsci.2009.05.018
17.
Tang
,
X.
,
Guo
,
K.
,
Li
,
H.
,
Du
,
Z.
, and
Tian
,
J.
,
2010
, “
Microfiltration Membrane Performance in Two-Chamber Microbial Fuel Cells
,”
Biochem. Eng. J.
,
52
(
2–3
), pp.
194
198
.10.1016/j.bej.2010.08.007
18.
Kannaiah Goud
,
R.
, and
Venkata Mohan
,
S.
,
2011
, “
Pre-Fermentation of Waste as a Strategy to Enhance the Performance of Single Chambered Microbial Fuel Cell (MFC)
,”
Int. J. Hydrogen Energy
,
36
(
21
), pp.
13753
13762
.10.1016/j.ijhydene.2011.07.128
You do not currently have access to this content.