Ultrahigh efficiency, ultralow emission fuel cell gas turbine (FC/GT) hybrid technology represents a significant breakthrough in electric power generation. FC/GT hybrid designs are potentially fuel flexible, dynamically responsive, scalable, low-emission generators. The current work develops a library of dynamic component models and system design tools that are used to conceptualize and evaluate hybrid cycle configurations. The physical models developed for the design analysis are capable of off-design simulation, perturbation analysis, dispatch evaluation, and control development. A parametric variation of seven fundamental design parameters provides insights into design and development requirements of FC/GT hybrids. As the primary generator in most configurations, the FC design choices dominate the system performance, but the optimal design space may be substantially different from a stand-alone FC system. FC operating voltage, fuel utilization, and balance of plant component sizing has large impacts on cost, performance, and functionality. Analysis shows that hybridization of existing fuel cell and gas turbine technology can approach 75% fuel-to-electricity conversion efficiency.

References

1.
FuelCell Energy Inc.
,
2006
, “
Record Electric Efficiency for DFC/Turbine Unit
,”
Fuel Cells Bull.
,
2006
(
4
), p.
10
.10.1016/S1464-2859(06)71021-5
2.
FuelCell Energy Inc.
,
2006
, “
FCE Power Plant in Earth Day Dedication at Montana Clinic
,”
Fuel Cells Bull.
,
2006
(
6
), p.
10
.10.1016/S1464-2859(06)71095-1
3.
Ghezel-Ayagh
,
H.
,
Walzak
,
J.
,
Patel
,
D.
,
Daly
,
J.
,
Maru
,
H.
,
Sanderson
,
R.
, and
Livingood
,
W.
,
2005
, “
State of Direct Fuel Cell/Turbine Systems Development
,”
J. Power Sources
,
152
, pp.
219
225
.10.1016/j.jpowsour.2004.12.060
4.
Samuelsen
,
S.
and
Brouwer
,
J.
,
2009
, “
Fuel Cell/Gas Turbine Hybrid
,”
Encyclopedia of Electrochemical Power Sources
, 1st ed.,
J.
Garche
, ed.,
Elsevier
,
New York
, pp.
124
134
.
5.
Rao
,
A.
,
MacLay
,
J.
, and
Samuelsen
,
S.
,
2004
, “
Efficiency of Electrochemical Systems
,”
J. Power Sources
,
134
, pp.
181
184
.10.1016/j.jpowsour.2004.02.028
6.
Richards
,
G. A.
,
McMillian
,
M. M.
,
Gemmen
,
R. S.
,
Rogers
,
W. A.
, and
Cully
,
S. R.
,
2001
, “
Issues for Low-Emission, Fuel-Flexible Power Systems
,”
Prog. Energy Combust. Sci.
,
27
, pp.
141
169
.10.1016/S0360-1285(00)00019-8
7.
Lutsey
,
N.
,
Brodrick
,
C. J.
, and
Lipman
,
T.
,
2007
, “
Analysis of Potential Fuel Consumption and Emissions Reductions From Fuel Cell Auxiliary Power Units (APUs) in Long-Haul Trucks
,”
Energy
,
32
, pp.
2428
2438
.10.1016/j.energy.2007.05.017
8.
Lloyd
,
A. C.
,
1992
, “
California Clean Air Initiatives—The Role of Fuel Cells
,”
J. Power Sources
,
37
, pp.
241
253
.10.1016/0378-7753(92)80081-L
9.
Lloyd
,
A. C.
,
2000
, “
The California Fuel Cell Partnership: An Avenue to Clean Air
,”
J. Power Sources
,
86
, pp.
57
60
.10.1016/S0378-7753(99)00457-7
10.
Ferrari
,
M. L.
,
Liese
,
E.
,
Tucker
,
D.
,
Lawson
,
L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2007
, “
Transient Modeling of the NETL Hybrid Fuel Cell/Gas Turbine Facility and Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
1012
1019
.10.1115/1.2747265
11.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
S.
,
2006
, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control
,”
ASME J. Fuel Cell Sci. Technol.
,
3
, pp.
144
154
.10.1115/1.2174063
12.
Yi
,
Y.
,
Rao
,
A. D.
,
Brouwer
,
J.
, and
Samuelsen
,
S. G.
,
2004
, “
Analysis and Optimization of a Solid Oxide Fuel Cell and Intercooled Gas Turbine (SOFC-ICGT) Hybrid Cycle
,”
J. Power Sources
,
132
, pp.
77
85
.10.1016/j.jpowsour.2003.08.035
13.
Winkler
,
W.
,
Nehter
,
P.
,
Williams
,
M. C.
,
Tucker
,
D.
, and
Gemmen
,
R.
,
2006
, “
General Fuel Cell Hybrid Synergies and Hybrid System Testing Status
,”
J. Power Sources
,
159
, pp.
656
666
.10.1016/j.jpowsour.2005.09.070
14.
Brouwer
,
J.
,
Jabbari
,
F.
,
Leal
,
E. M.
, and
Orr
,
T.
,
2005
, “
Analysis of a Molten Carbonate Fuel Cell: Numerical Modeling and Experimental Validation
,”
J. Power Sources
,
158
, pp.
213
224
.10.1016/j.jpowsour.2005.07.093
15.
Roberts
,
R.
,
Brouwer
,
J.
,
Liese
,
E.
, and
Gemmen
,
R. S.
,
2005
, “
Development of Controls for Dynamic Operation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems
,”
Proceedings of ASME Turbo Expo 2005
,
Reno-Tahoe, NV
, June 6–9,
ASME
Paper No. GT2005-68774, pp.
325
331
.10.1115/GT2005-68774
16.
Roberts
,
R.
,
Brouwer
,
J.
,
Liese
,
E.
, and
Gemmen
,
R. S.
,
2005
, “
Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
1
8
.10.1115/1.1995767
17.
Rashidi
,
R.
,
Berg
,
P.
, and
Dincer
, I
.
,
2009
, “
Performance Investigation of a Combined MCFC System
,”
Int. J. Hydrogen Energy
,
34
, pp.
4395
4405
.10.1016/j.ijhydene.2009.03.038
18.
Roberts
,
R. A.
, and
Brouwer
,
J.
,
2006
, “
Dynamic Simulation of a Pressurized 220 kW Solid Oxide Fuel-Cell–Gas-Turbine Hybrid System: Modeled Performance Compared to Measured Results
,”
ASME J. Fuel Cell Sci. Technol.
,
3
, pp.
18
25
.10.1115/1.2133802
19.
Burbank
,
W.
,
Witmer
,
D.
, and
Holcomb
,
F.
,
2008
, “
Model of a Novel Pressurized SOFC-GT Hybrid Engine
,”
J. Power Sources
,
193
, pp.
656
664
.10.1016/j.jpowsour.2009.04.004
20.
Milewski
,
J.
,
Miller
,
A.
, and
Salacinski
,
J.
,
2006
, “
Off-Design Analysis of SOFC Hybrid System
,”
Int. J. Hydrogen Energy
,
32
, pp.
687
698
.10.1016/j.ijhydene.2006.08.007
21.
Pratt
,
J. W.
,
Brouwer
,
J.
, and
Freeh
,
J. E.
,
2004
, “
Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications
,”
Proceedings of ASME Turbo Expo 2004
,
Vienna, Austria
, June 14–17,
ASME
Paper No. GT2004-53616, pp.
371
379
.10.1115/GT2004-53616
22.
McLarty
,
D. F.
,
Samuelsen
,
S.
, and
Brouwer
,
J.
,
2010
, “
Novel Dynamic Quasi-3-Dimensional High Temperature Fuel Cell Model With Internal Manifolding
,” ASME 8th International Conference on Fuel Cell Science, Engineering and Technology, Brooklyn, NY, June 14–16,
ASME
Paper No. FuelCell2010-33328, pp.
257
268
10.1115/FuelCell2010-33328.
23.
Yang
,
J. S.
,
Sohn
,
J. L.
, and
Ro
,
S. T.
,
2007
, “
Performance Characteristics of a Solid Oxide Fuel Cell/Gas Turbine Hybrid System With Various Part-Load Control Modes
,”
J. Power Sources
,
166
, pp.
155
164
.10.1016/j.jpowsour.2006.12.091
24.
Kaneko
,
T.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
,
2006
, “
Power and Temperature Control of Fluctuating Biomass Gas Fueled Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid System
,”
J. Power Sources
,
160
, pp.
316
325
.10.1016/j.jpowsour.2006.01.044
You do not currently have access to this content.