In this current study, we are attempting to build up a light weight and corrosion resistant bipolar plate for the proton exchange membrane fuel cell. A titanium bipolar plate substrate has been chosen as the base metal due to its low cost, simplicity to manufacture into stampable bipolar plates, and its light weight. Our goal is to obtain a smaller and lighter weight single fuel cell is to sinter titanium with a corrosion resistant material. Iridium oxide (IrO2) was investigated. The cell performance of the iridium oxide-sintered bipolar plates is close to and even better than the proton exchange membrane fuel cells, with graphite and pure titanium bipolar plates at low operating temperature with low and high membrane humidifier temperatures, respectively. Iridium oxide-sintered titanium bipolar plates can be employed to produce fuel cells with light weight and low sintering cost, ideal for portable applications.

References

1.
Besmann
,
T.
,
Henry
,
J.
, and
Klett
,
J.
,
2003
,
Development of a Carbon Composite Bipolar Plate
,” Proc. Fuel Cell Seminar
, Miami Beach, FL, November 3–7, pp.
61
64
.
2.
Armstrong
,
T.
,
Brady
,
M.
, and
Tortorelli
,
P.
,
2003
, “
Thermally Nitrided Metallic Bipolar Plates for PEM Fuel Cell
,”
Proc. Fuel Cell Seminar
, Miami Beach, FL, November 3–7, pp.
251
254
.
3.
Desrosiers
,
K. C.
,
2002
, “
Investigation of Novel, Low Cost Materials and Manufacturing Methods for PEM Fuel Cell Bipolar Plates
,” SBIR Phase II Final Report: Technical and Commercialization Reports.
4.
Kumar
,
A.
, and
Reddy
,
R. G.
,
2002
,
PEM Fuel Cell Bipolar Plate-Material Selection, Design and Integration
,
D.
Chandra
and
R. G.
Bautista
, eds.,
TMS
,
Warrendale, PA
, p.
41
.
5.
Woodman
,
A.
,
Jayne
,
K.
,
Anderson
,
E.
, and
Kimble
,
M.
,
1999
, “
Lightweight and Corrosion Resistant Metal Bipolar Plates for PEM Fuel Cells
,” SAE Technical Paper No. 1999-01-2614.
6.
Davies
,
D. P.
,
Adcock
,
P. L.
,
Turpin
,
M.
, and
Rowen
,
S. J.
,
2000
, “
Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells
,”
J. Power Sources
,
86
(
1-2
), pp.
237
242
.
7.
Hodgson
,
D. R.
,
May
,
B.
,
Adcock
,
P. L.
, and
Davies
,
D. P.
,
2001
, “
New Lightweight Bipolar Plate System for Polymer Electrolyte Membrane Fuel Cells,” 22nd International
Power Sources Symposium, Manchester, UK, April 9–11, [J. Power Sources
96
(
1
), pp.
233
235
(2001)].
8.
Kruszewski
,
E.
,
2000
, “
Investigation of Graphite Bipolar Plates for PEM Fuel Cell Performance
,” M.S. thesis, Virginia Tech, Blacksburg, VA.
9.
Scholta
,
J.
,
Rohland
,
B.
,
Trapp
,
V.
, and
Focken
,
U.
,
1999
, “
Investigation on Novel Low-Cost Graphite Composite Bipolar Plates
,”
J. Power Sources
,
84
(
1999
), pp.
231
234
.
10.
Wind
,
J.
,
Späh
,
R.
,
Kaiser
,
W.
, and
Böhm
,
G.
,
2002
, “
Metallic Bipolar Plates for PEM Fuel Cells
,”
J. Power Sources
,
105
(
2
), pp.
256
260
.
11.
Hornung
,
R.
, and
Kappelt
,
G.
,
1998
, “
Bipolar Plate Materials Development Using Fe-Based Alloys for Solid Polymer Fuel Cells
,”
J. Power Sources
,
72
(
1
), pp.
20
21
.
12.
Makkus
,
R. C.
,
Janssen
,
A.H.H.
,
de Bruijn
,
F. A.
, and
Mallant
,
R. K.
,
2000
, “
Use of Stainless Steel for Cost Competitive Bipolar Plates in the SPFC
,”
J. Power Sources
,
86
(
1-2
), pp.
274
282
.
13.
Wang
,
S. H.
,
Peng
,
J.
,
Lui
,
W. B.
, and
Zhang
,
J. S.
, “
Performance of the Gold-Plated Titanium Bipolar Plates for the Light Weight PEM Fuel Cells
,”
J. Power Sources
,
162
(
1
), pp.
486
491
.
14.
Kumar
,
A.
, and
Reddy
,
R. G.
,
2003
, “
Effect of Channel Dimensions and Shape in the Flow-Field Distributor on the Performance of Polymer Electrolyte Membrane Fuel Cells
,
J. Power Sources
,
113
(
1
), pp.
11
18
.
15.
Lee
,
W. K.
,
Ho
,
C. H.
,
Van Zee
,
J. W.
, and
Murthy
,
M.
,
1999
, “
The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell
,”
J. Power Sources
,
84
(
1
), pp.
45
51
.
16.
Hentall
,
L. P.
,
Lakeman
,
J. B.
,
Mepsted
,
O. G.
,
Adcock
,
P. L.
, and
Moore
,
J. M.
,
1999
, “
New Materials for Polymer Electrolyte Membrane Fuel Cell Current Collectors
,”
J. Power Sources
,
80
(
1-2
), pp.
235
241
.
17.
Büchi
,
F. N.
, and
Srinivasan
S.
,
1996
, “
Polymer Electrolyte Fuel Cells; Flow Field for Efficient Air Operation
,” Paul Scherrer Institut, Villigen, Switzerland, Annual Report 1996/Annex V.
18.
Yoshimura
,
J.
,
Nonobe
,
Y.
, and
Yamane
,
K.
,
1999
, “
Separator For Fuel Cell, Fuel Cell Incorporating the Same, and Method of Production of the Same
,” European Patent Application EP 0 955 686 A1.
You do not currently have access to this content.