Abstract

Recently, a class of adaptive schemes has been developed for rejecting sinusoidal output disturbances with unknown frequencies, phases, and amplitudes. These adaptive schemes require an accurate model of the affected system's dynamics to function, and the controller performance degrades as the modeling error increases. While linear time-invariant (LTI) dynamics can adequately model the dynamics of some systems, a time-varying model of the system dynamics is more appropriate in certain scenarios. This paper proposes a robust adaptive scheme for rejecting disturbances that affect the output of a system described by a known linear time-varying model. The disturbances are described by an unknown number of sinusoidal terms with unknown time-varying frequencies. Analysis is done in ideal case where the disturbance frequencies are perfectly known to provide conditions guaranteeing the existence of a controller and a corresponding set of parameters which reject the disturbance. Analysis is then done in the more realistic adaptive scenario where the disturbance frequencies are unknown, and a robust adaptive scheme for selecting controller parameters which reject the disturbance is proposed. Performance of the controller with respect to the speed of variation in the plant model parameters is assessed via simulation.

References

1.
Yang
,
J.
,
Zolotas
,
A.
,
Chen
,
W.-H.
,
Michail
,
K.
, and
Li
,
S.
,
2011
, “
Robust Control of Nonlinear Maglev Suspension System With Mismatched Uncertainties Via Dobc Approach
,”
ISA Trans.
,
50
(
3
), pp.
389
396
.10.1016/j.isatra.2011.01.006
2.
Bittar
,
A.
, and
Sales
,
R. M.
,
1997
, “
H2 and h, Control Applied to an Electromagnetically Levitated Vehicle
,”
Proceedings of the 1997 IEEE International Conference on Control Applications
, Hartford, CT, Oct. 5–7, pp.
773
778
.10.1109/CCA.1997.627753
3.
Sinha
,
P. K.
, and
Pechev
,
A. N.
,
1999
, “
Model Reference Adaptive Control of a Maglev System With Stable Maximum Descent Criterion
,”
Automatica
,
35
(
8
), pp.
1457
1465
.10.1016/S0005-1098(99)00040-0
4.
Leong
,
F.
,
Mohammadi
,
A.
,
Tan
,
Y.
,
Thiruchelvam
,
D.
,
Lai
,
C. Y.
,
Valdastri
,
P.
, and
Oetomo
,
D.
,
2018
, “
Disturbance Rejection in Multi-Dof Local Magnetic Actuation for the Robotic Abdominal Surgery
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1568
1575
.10.1109/LRA.2018.2800795
5.
Rosen
,
J.
,
Hannaford
,
B.
, and
Satava
,
R.
,
2010
,
Surgical Robotics: Systems, Applications, and Visions
, 1st ed., Springer, New York.10.1007/978-1-4419-1126-1
6.
Gangloff
,
J.
,
Ginhoux
,
R.
,
de Mathelin
,
M.
,
Soler
,
L.
, and
Marescaux
,
J.
,
2006
, “
Model Predictive Control for Compensation of Cyclic Organ Motions in Teleoperated Laparoscopic Surgery
,”
IEEE Trans. Control Syst. Technol.
,
14
(
2
), pp.
235
246
.10.1109/TCST.2005.863650
7.
Radhakrishnan
,
V.
,
1999
, “
Model Based Supervisory Control of a Ball Mill Grinding Circuit
,”
J. Process Control
,
9
(
3
), pp.
195
211
.10.1016/S0959-1524(98)00048-1
8.
Yang
,
J.
,
Li
,
S.
,
Chen
,
X.
, and
Li
,
Q.
,
2010
, “
Disturbance Rejection of Ball Mill Grinding Circuits Using Dob and Mpc
,”
Powder Technol.
,
198
(
2
), pp.
219
228
.10.1016/j.powtec.2009.11.010
9.
Pomerleau
,
A.
,
Hodouin
,
D.
,
Desbiens
,
A.
, and
Gagnon
,
É.
,
2000
, “
A Survey of Grinding Circuit Control Methods: From Decentralized Pid Controllers to Multivariable Predictive Controllers
,”
Powder Technol.
,
108
(
2–3
), pp.
103
115
.10.1016/S0032-5910(99)00207-7
10.
Fareh
,
R.
,
Khadraoui
,
S.
,
Abdallah
,
M. Y.
,
Baziyad
,
M.
, and
Bettayeb
,
M.
,
2021
, “
Active Disturbance Rejection Control for Robotic Systems: A Review
,”
Mechatronics
,
80
, p.
102671
.10.1016/j.mechatronics.2021.102671
11.
Wang
,
J.
,
Tang
,
S.-X.
, and
Krstic
,
M.
,
2020
, “
Adaptive Output-Feedback Control of Torsional Vibration in Off-Shore Rotary Oil Drilling Systems
,”
Automatica
,
111
, p.
108640
.10.1016/j.automatica.2019.108640
12.
Grcar
,
B.
,
Cafuta
,
P.
,
Znidaric
,
M.
, and
Gausch
,
F.
,
1996
, “
Nonlinear Control of Synchronous Servo Drive
,”
IEEE Trans. Control Syst. Technol.
,
4
(
2
), pp.
177
184
.10.1109/87.486344
13.
Kim
,
K.-H.
, and
Youn
,
M.-J.
,
2002
, “
A Nonlinear Speed Control for a pm Synchronous Motor Using a Simple Disturbance Estimation Technique
,”
IEEE Trans. Ind. Electron.
,
49
(
3
), pp.
524
535
.10.1109/TIE.2002.1005377
14.
Zhang
,
Q.
,
Fan
,
Y.
,
Chen
,
J.
,
Yang
,
C.
, and
Cheng
,
M.
,
2022
, “
A Current Harmonic Suppression Method for PMSM Based on Harmonic Prediction Adaptive Notch Filter
,”
IEEE Trans. Energy Convers.
,
37
(
3
), pp.
1
1
.10.1109/TEC.2022.3167111
15.
Su
,
Y.
,
Zheng
,
C.
, and
Duan
,
B.
,
2005
, “
Automatic Disturbances Rejection Controller for Precise Motion Control of Permanent-Magnet Synchronous Motors
,”
IEEE Trans. Ind. Electron.
,
52
(
3
), pp.
814
823
.10.1109/TIE.2005.847583
16.
Sun
,
H.
,
Li
,
S.
,
Yang
,
J.
, and
Guo
,
L.
,
2014
, “
Non-Linear Disturbance Observer-Based Back-Stepping Control for Airbreathing Hypersonic Vehicles With Mismatched Disturbances
,”
IET Control Theory Appl.
,
8
(
17
), pp.
1852
1865
.10.1049/iet-cta.2013.0821
17.
Sun
,
H.
,
Li
,
S.
, and
Sun
,
C.
,
2013
, “
Finite Time Integral Sliding Mode Control of Hypersonic Vehicles
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
229
244
.10.1007/s11071-013-0780-4
18.
Lavretsky
,
E.
, and
Wise
,
K.
,
2012
,
Robust and Adaptive Control: With Aerospace Applications. Advanced Textbooks in Control and Signal Processing
,
Springer
,
London, UK
.
19.
Khalil
,
H.
,
2002
,
Nonlinear Systems
,
Pearson Education, Prentice Hall
,
UK
.
20.
Jafari
,
S.
,
Ioannou
,
P.
,
Fitzpatrick
,
B.
, and
Wang
,
Y.
,
2015
, “
Robustness and Performance of Adaptive Suppression of Unknown Periodic Disturbances
,”
IEEE Trans. Automaticc Control
,
60
(
8
), p.
8
.
21.
Jafari
,
S.
,
Ioannou
,
P.
, and
Rudd
,
L.
,
2017
, “
Adaptive Feedback Suppression of Unknown Periodic Components of Acoustic Noises With Time-Varying Characteristics
,”
J. Vib. Control
,
23
(
4
), pp.
526
538
.10.1177/1077546315581249
22.
Jafari
,
S.
, and
Ioannou
,
P.
,
2016
, “
Robust Adaptive Attenuation of Unknown Perioidic Disturbances in Uncertain Mimo Systems
,”
Automatica
,
70
, pp.
32
42
.10.1016/j.automatica.2016.03.029
23.
Jafari
,
S.
, and
Ioannou
,
P.
,
2016
, “
Rejection of Unknown Periodic Disturbances for Continuous-Time Mimo Systems With Dynamic Uncertainties
,”
Int. J. Adaptive Control Signal Process.
,
30
(
12
), pp.
1674
1688
.10.1002/acs.2683
24.
Kinney
,
C.
, and
Callafon
,
R.
,
2011
, “
The Internal Model Principle for Periodic Disturbances With Rapidly Time-Varying Frequencies
,”
Int. J. Adaptive Control Signal Process.
,
25
(
11
), pp.
1006
1022
.10.1002/acs.1254
25.
Emedi
,
Z.
, and
Karimi
,
A.
,
2012
, “
Fixed-Order Lpv Controller Design for Rejection of Sinusoidal Disturbance With Time-Varying Frequency
,”
2012 IEEE International Conference on Control Applications
, Dubrovnik, Croatia, Oct.
3
5
.10.1109/CCA.2012.6402733
26.
Kinney
,
C.
, and
Callafon
,
R.
,
2009
, “
Robust Estimation for Automatic Controller Tuning With Application to Active Noise Control
,”
Model-Based Control
, P. Hof, C. Scherer, P. Heuberger, eds., Springer, Boston, MA.10.1007/978-1-4419-0895-7_7
27.
Kinney
,
C.
,
Fang
,
H.
, and
Callafon
,
R.
,
2011
, “
Robust Estimation and Automatic Controller Tuning in Vibration Control of Time Varying Harmonic Disturbances
,”
IFAC Proceedings Volumes
, 44(1), pp.
5401
5406
.10.3182/20110828-6-IT-1002.01676
28.
Vau
,
B.
, and
Landau
,
I.
,
2019
, “
Youla-Kucera Adaptive Feedback Disturbance Rejection in the Presence of Plant Uncertainties
,” 2019 IEEE 58th Conference on Decision and Control (
CDC
), Nice, France, Dec. 11–13, pp.
102
107
.10.1109/CDC40024.2019.9030073
29.
Vau
,
B.
, and
Landau
,
I.
,
2020
, “
Adaptive Rejection of Narrow-Band Disturbances in the Presence of Plant Uncertainties - a Dual Youla-Kucera Approach
,”
Automatica
, 129, p.
109618
.10.1016/j.automatica.2021.109618
30.
Jafari
,
S.
, and
Ioannou
,
P. A.
,
2017
, “
Overparameterized Robust Mrac for Rejction of Unknown Periodic Disturbances Acting on Unknown Plants in the Presence of Noise
,” 2017 25th Mediterranean Conference on Control and Automation (
MED
), Valletta, Malta, July 3–6, pp.
822
827
.10.1109/MED.2017.7984220
31.
Jafari
,
S.
, and
Ioannou
,
P. A.
,
2019
, “
Reference Tracking Control and Attenuation of Unknown Periodic Disturbances in the Presence of Noise for Unknown Minimum-Phase Lti Plants
,”
Int. J. Adaptive Control Signal Process.
,
33
(
1
), pp.
196
211
.10.1002/acs.2960
32.
Pigg
,
S.
, and
Bodson
,
M.
,
2010
, “
Adaptive Algorithms for the Rejection of Sinusoidal Disturbances Acting on Unknown Plants
,”
IEEE Trans. Control Syst. Technol.
,
18
(
4
), pp.
822
836
.10.1109/TCST.2009.2029237
33.
Tsakalis
,
K. S.
, and
Ioannou
,
P. A.
,
1993
,
Linear Time-Varying Systems: Control and Adaptation
,
Prentice Hall, Inc
,
UK
.
34.
Landau
,
I.
,
Silva
,
A.
,
Airimitoaie
,
T.-B.
,
Buche
,
G.
, and
Noe
,
M.
,
2013
, “
Benchmark on Adaptive Regulation - Rejection of Unknown/Time-Varying Multiple Narrow Band Disturbances
,”
Eur. J. Control
,
19
(
4
), pp.
237
252
.10.1016/j.ejcon.2013.05.007
35.
Tsakalis
,
K.
, and
Ioannou
,
P.
,
1987
, “
Adaptive Control of Linear Time-Varying Plants
,”
Automatica
,
23
(
4
), pp.
459
468
.10.1016/0005-1098(87)90075-6
36.
Deif
,
A.
,
1986
,
Perturbation of Linear Equations
,
Springer
,
Berlin, Heidelberg
.
37.
Ioannou
,
P. A.
, and
Sun
,
J.
,
2012
,
Robust Adaptive Control
,
Dover Publications
,
UK
.
38.
Murray
,
J.
,
1992
,
Asymptotic Analysis. Applied Mathematical Sciences
,
Springer
,
New York
.
39.
Salgado
,
M. E.
,
Goodwin
,
G. C.
, and
Middleton
,
R. H.
,
1988
, “
Modified Least Squares Algorithm Incorporating Exponential Resetting and Forgetting
,”
Int. J. Control
,
47
(
2
), pp.
477
491
.10.1080/00207178808906026
40.
Corriou
,
J.-P.
,
2004
,
Process Control: Theory and Applications
, 2nd ed.,
Springer
,
Cham, Germany
.
41.
Mathworks Inc
., 2024, “
Watertank Simulink Model
,” MATLAB & Simulink Documentation, accessed Feb. 23, 2024, https://www.mathworks.com/help/slcontrol/gs/watertank-simulink-model.html
42.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1985
,
Matrix Analysis
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.