Abstract

A continuous saturated controller using smooth saturation functions is established for MacPherson active suspension system which includes nonlinear uncertainties, unknown road excitations, and bounded disturbances. The developed controller exploits the properties of the hyperbolic functions to guarantee saturation limits are not exceeded, while stability analysis procedures of the robust integral of the sign of the error (RISE) control technique utilize the advantages of high gain control strategies in compensating for unknown uncertainties. The saturated controller guarantees asymptotic regulation of the sprung mass acceleration to improve the ride comfort despite model uncertainties and additive disturbances in the dynamics. Simulation results demonstrate the improvement in the ride comfort while tire deflection and the suspension deflection are within admissible range in comparison with three other suspensions.

References

1.
Hong
,
K.-S.
,
Jeon
,
D.-S.
,
Yoo
,
W.-S.
,
Sunwoo
,
H.
,
Shin
,
S.-Y.
,
Kim
,
C.-M.
, and
Park
,
B.-S.
,
1999
, “
A New Model and an Optimal Pole-Placement Control of the Macpherson Suspension System
,”
SAE Trans., pp. 2542–2461
.
2.
Li
,
H.
,
Yu
,
J.
,
Hilton
,
C.
, and
Liu
,
H.
,
2013
, “
Adaptive Sliding-Mode Control for Nonlinear Active Suspension Vehicle Systems Using t-s Fuzzy Approach
,”
IEEE Trans. Ind. Electron.
,
60
(
8
), pp.
3328
3338
.10.1109/TIE.2012.2202354
3.
Sun
,
W.
,
Pan
,
H.
, and
Gao
,
H.
,
2016
, “
Filter-Based Adaptive Vibration Control for Active Vehicle Suspensions With Electrohydraulic Actuators
,”
IEEE Trans. Veh. Technol.
,
65
(
6
), pp.
4619
4626
.10.1109/TVT.2015.2437455
4.
Hrovat
,
D.
,
1997
, “
Survey of Advanced Suspension Developments and Related Optimal Control Applications
,”
Automatica
,
33
(
10
), pp.
1781
1817
.10.1016/S0005-1098(97)00101-5
5.
Fialho
,
I. J.
, and
Balas
,
G. J.
,
2000
, “
Design of Nonlinear Controllers for Active Vehicle Suspensions Using Parameter-Varying Control Synthesis
,”
Veh. Syst. Dyn.
,
33
(
5
), pp.
351
370
.10.1076/0042-3114(200005)33:5;1-Q;FT351
6.
Du
,
H.
,
Lam
,
J.
, and
Sze
,
K. Y.
,
2005
, “
Design of Non-Fragile Hinfinity Controller for Active Vehicle Suspensions
,”
Modal Anal.
,
11
(
2
), pp.
225
243
.10.1177/1077546305049392
7.
Sun
,
W.
,
Gao
,
H.
, and
Kaynak
,
O.
,
2011
, “
Finite Frequency Hinfinity Control for Vehicle Active Suspension Systems
,”
IEEE Trans. Control Syst. Technol.
,
19
(
2
), pp.
416
422
.10.1109/TCST.2010.2042296
8.
Wang
,
G.
,
Chen
,
C.
, and
Yu
,
S.
,
2017
, “
Robust Non-Fragile Finite-Frequency Hinfinity Static Output-Feedback Control for Active Suspension Systems
,”
Mech. Syst. Sig. Process
,
91
, pp.
41
56
.10.1016/j.ymssp.2016.12.039
9.
Zin
,
A.
,
Sename
,
O.
,
Gaspar
,
P.
,
Dugard
,
L.
, and
Bokor
,
J.
,
2008
, “
Robust Lpv Hinfiniti Control for Active Suspensions With Performance Adaptation in View of Global Chassis Control
,”
Veh. Syst. Dyn.
,
46
(
10
), pp.
889
912
.10.1080/00423110701684587
10.
Wang
,
R.
,
Jing
,
H.
,
Yan
,
F.
,
Karimi
,
H. R.
, and
Chen
,
N.
,
2015
, “
Optimization and Finite-Frequency Hinfinity Control of Active Suspensions in In-Wheel Motor Driven Electric Ground Vehicles
,”
J. Franklin Inst.
,
352
(
2
), pp.
468
484
.10.1016/j.jfranklin.2014.05.005
11.
Kaleemullah
,
M.
, and
Faris
,
W. F.
,
2014
, “
Active Suspension Control of Vehicle With Uncertainties Using Robust Controllers
,”
Int. J. Veh. Syst. Modell. Test.
,
9
(
3/4
), pp.
293
310
.10.1504/IJVSMT.2014.066512
12.
Fialho
,
I.
, and
Balas
,
G. J.
,
2002
, “
Road Adaptive Active Suspension Design Using Linear Parameter-Varying Gain-Scheduling
,”
IEEE Trans. Control Syst. Technol.
,
10
(
1
), pp.
43
54
.10.1109/87.974337
13.
Szaszi
,
I.
,
Gaspar
,
P.
, and
Bokor
,
J.
,
2002
, “
Nonlinear Active Suspension Modelling Using Linear Parameter Varying Approach
,”
Proceedings of the 10th Mediterranean Conference on Control and Automation,
Lisbon, Portugal, July 9–12, pp.
1
10
.
14.
Lin
,
J.-S.
, and
Kanellakopoulos
,
J.
,
1997
, “
Road-Adaptive Nonlinear Design of Active Suspensions
,”
Proceedings of the American Control Conference
, Vol.
1,
Albuquerque, NM, pp.
714
718
.10.1109/ACC.1997.611894
15.
Al-Holou
,
N.
,
Lahdhiri
,
T.
,
Joo
,
D. S.
,
Weaver
,
J.
, and
Al-Abbas
,
F.
,
2002
, “
Sliding Mode Neural Network Inference Fuzzy Logic Control for Active Suspension Systems
,”
IEEE Trans. Fuzzy Syst.
,
10
(
2
), pp.
234
246
.10.1109/91.995124
16.
Chen
,
S.-A.
,
Wang
,
J.-C.
,
Yao
,
M.
, and
Kim
,
Y.-B.
,
2017
, “
Improved Optimal Sliding Mode Control for a Non-Linear Vehicle Active Suspension System
,”
J. Sound Vib.
,
395
, pp.
1
25
.10.1016/j.jsv.2017.02.017
17.
Taghavifar
,
H.
,
Mardani
,
A.
,
Hu
,
C.
, and
Qin
,
Y.
,
2020
, “
Adaptive Robust Nonlinear Active Suspension Control Using an Observer-Based Modified Sliding Mode Interval Type-2 Fuzzy Neural Network
,”
IEEE Trans. Intell. Veh.
,
5
(
1
), pp.
53
62
.10.1109/TIV.2019.2955365
18.
Wang
,
H.
,
Lu
,
Y.
,
Tian
,
Y.
, and
Christov
,
N.
,
2020
,
Fuzzy Sliding Mode Based Active Disturbance Rejection Control for Active Suspension System
, Vol.
234
,
SAGE Publications Sage UK
,
London, UK
, pp.
449
457
.
19.
Fallah
,
M.
,
Bhat
,
R.
, and
Xie
,
W.
,
2009
, “
New Model and Simulation of Macpherson Suspension System for Ride Control Applications
,”
Veh. Syst. Dyn
,
47
(
2
), pp.
195
220
.10.1080/00423110801956232
20.
Shojaeefard
,
M. H.
,
Khalkhali
,
A.
, and
Yarmohammadisatri
,
S.
,
2017
, “
An Efficient Sensitivity Analysis Method for Modified Geometry of Macpherson Suspension Based on Pearson Correlation Coefficient
,”
Veh. Syst. Dyn
,
55
(
6
), pp.
827
852
.10.1080/00423114.2017.1283046
21.
Dutta
,
S.
,
Choi
,
S.-M.
, and
Choi
,
S.-B.
,
2016
, “
A New Adaptive Sliding Mode Control for Macpherson Strut Suspension System With Magneto-Rheological Damper
,”
J. Intell. Mater. Syst. Struct
,
27
(
20
), pp.
2795
2809
.10.1177/1045389X16641221
22.
Ismail
,
M. F.
,
Sam
,
Y. M.
,
Sudin
,
S.
,
Peng
,
K.
, and
Aripin
,
M. K.
,
2014
, “
Modelling and Control of Macpherson Active Suspension System Using Composite Nonlinear Feedback Under Chassis Twisted Road Condition
,”
Asian Simulation Conference
,
Springer
, Berlin, pp.
310
321
.
23.
Hurel
,
J.
,
Mandow
,
A.
, and
García-Cerezo
,
A.
,
2013
, “
Kinematic and Dynamic Analysis of the Mcpherson Suspension With a Planar Quarter-Car Model
,”
Veh. Syst. Dyn
,
51
(
9
), pp.
1422
1437
.10.1080/00423114.2013.804937
24.
Hong
,
K.-S.
,
Sohn
,
H.-C.
, and
Hedrick
,
J. K.
,
2002
, “
Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardware-in-the-Loop Tuning
,”
ASME J. Dyn. Syst., Meas., Control
,
124
(
1
), pp.
158
167
.10.1115/1.1434265
25.
Patre
,
P. M.
,
MacKunis
,
W.
,
Kaiser
,
K.
, and
Dixon
,
W. E.
,
2008
, “
Asymptotic Tracking for Uncertain Dynamic Systems Via a Multilayer Neural Network Feedforward and RISE Feedback Control Structure
,”
IEEE Trans. Autom. Control
,
53
(
9
), pp.
2180
2185
.10.1109/TAC.2008.930200
26.
Dinh
,
H.
,
Bhasin
,
S.
,
Kamalapurkar
,
R.
, and
Dixon
,
W. E.
,
2017
, “
Dynamic Neural Network-Based Output Feedback Tracking Control for Uncertain Nonlinear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
7
), p.
074502
.10.1115/1.4035871
27.
Fischer
,
N.
,
Hughes
,
D.
,
Walters
,
P.
,
Schwartz
,
E.
, and
Dixon
,
W. E.
,
2014
, “
Nonlinear RISE-Based Control of an Autonomous Underwater Vehicle
,”
IEEE Trans. Robot.
,
30
(
4
), pp.
845
852
. Aug.10.1109/TRO.2014.2305791
28.
Hu
,
C.
,
Gao
,
H.
,
Guo
,
J.
,
Taghavifar
,
H.
,
Qin
,
Y.
,
Na
,
J.
, and
Wei
,
C.
,
2019
, “
Rise-Based Integrated Motion Control of Autonomous Ground Vehicles With Asymptotic Prescribed Performance
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
, pp. 1–13 (epub).10.1109/TSMC.2019.2950468
29.
Fischer
,
N.
,
Kan
,
Z.
,
Kamalapurkar
,
R.
, and
Dixon
,
W. E.
,
2014
, “
Saturated RISE Feedback Control for a Class of Second-Order Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
59
(
4
), pp.
1094
1099
.10.1109/TAC.2013.2286913
30.
Dixon
,
W. E.
,
de Queiroz
,
M. S.
,
Dawson
,
D. M.
, and
Zhang
,
F.
,
1999
, “
Tracking Control of Robot Manipulators With Bounded Torque Inputs
,”
Robotica
,
17
(
2
), pp.
121
129
.10.1017/S0263574799001228
31.
Dinh
,
H.
,
Bhasin
,
S.
, and
Dixon
,
W. E.
,
2010
, “
Dynamic Neural Network-Based Robust Identification and Control of a Class of Nonlinear Systems
,”
Proceedings of IEEE Conference Decision Control
, Atlanta, GA, Dec. 15, pp.
5536
5541
.10.1109/CDC.2010.5717445
32.
Filippov
,
A. F.
,
1988
,
Differential Equations With Discontinuous Right-Hand Sides
,
Kluwer Academic Publishers
, Dordrecht, The Netherlands.
33.
Aubin
,
J. P.
, and
Frankowska
,
H.
,
2009
,
Set-Valued Analysis
,
. Springer Science & Business Media, Berlin.
34.
Shevitz
,
D.
, and
Paden
,
B.
,
1994
, “
Lyapunov Stability Theory of Nonsmooth Systems
,”
IEEE Trans. Autom. Control
,
39
(
9
), pp.
1910
1914
.10.1109/9.317122
35.
Paden
,
B. E.
, and
Sastry
,
S. S.
,
1987
, “
A Calculus for Computing Filippov's Differential Inclusion With Application to the Variable Structure Control of Robot Manipulators
,”
IEEE Trans. Circuits Syst.
,
34
(
1
), pp.
73
82
.10.1109/TCS.1987.1086038
36.
Clarke
,
F. H.
,
1990
,
Optimization and Nonsmooth Analysis
,
Siam, Philadelphia, PA
.
37.
Leine
,
R.
, and
van de Wouw
,
N.
,
2008
, “
Non-Smooth Dynamical Systems
,”
Stability and Convergence of Mechanical Systems with Unilateral Constraints
(Lecture Notes in Applied and Computational Mechanics, Vol.
36
),
Springer
,
Berlin/Heidelberg
, pp.
59
77
.
38.
Fischer
,
N.
,
Kamalapurkar
,
R.
, and
Dixon
,
W. E.
,
2013
, “
LaSalle-Yoshizawa Corollaries for Nonsmooth Systems
,”
IEEE Trans. Autom. Control
,
58
(
9
), pp.
2333
2338
.10.1109/TAC.2013.2246900
39.
Dinh
,
H.
,
2019
, “
Acceleration Estimation for Macpherson Active Suspension Using Dynamic Neural Networks-Based Observers
,”
Advances in Engineering Research and Application. ICERA 2018. Lecture Notes in Networks and Systems
, Vol.
63
,
H.
Fujita
,
D.
Nguyen
,
N.
Vu
,
T.
Banh
, and
H.
Puta
, eds.,
Springer
,
Cham, Switzerland
, pp.
125
131,
Chap.
18
.
40.
Killingsworth
,
N. J.
, and
Krstic
,
M.
,
2006
, “
PID Tuning Using Extremum Seeking: Online, Model-Free Performance Optimization
,”
IEEE Control Syst. Mag
,
26
(
1
), pp.
70
79
.10.1109/MCS.2006.1580155
41.
Astrom
,
K.
,
Hagglund
,
T.
,
Hang
,
C.
, and
Ho
,
W.
,
1993
, “
Automatic Tuning and Adaptation for PID Controllers-A Survey
,”
Control Eng. Pract
,
1
(
4
), pp.
669
714
.10.1016/0967-0661(93)91394-C
42.
Walgama
,
K. S.
,
RäNnbäCk
,
S.
, and
Sternby
,
J.
,
1992
, “
Generalization of Conditioning Technique for Anti-Windup Compensators
,”
Proc. IEE Control Theory Appl.
,
139
(
2
), pp.
109
118
.10.1049/ip-d.1992.0016
43.
Schoukens
,
J.
,
Pintelon
,
R.
,
Rolain
,
Y.
, and
Dobrowiecki
,
T.
,
2001
, “
Frequency Response Function Measurements in the Presence of Nonlinear Distortions
,”
Automatica
,
37
(
6
), pp.
939
946
.10.1016/S0005-1098(01)00037-1
44.
Stack
,
A.
, and
Doyle
,
F.
,
1995
, “
A Measure for Control Relevant Nonlinearity
,”
Proceedings of American Control Conference-ACC'95
, Vol.
3
,
IEEE
, Seattle, WA, June 21–23, pp.
2200
2204
.10.1109/ACC.1995.531290
You do not currently have access to this content.