Abstract

Analysis on buckling behavior of functionally graded (FG) Timoshenko nanobeam with cross-sectional variation induced by nonlinear temperature (NLT) field has been presented on the basis of first-order shear deformation theory in conjunction with Eringen's nonlocal elasticity theory. The cross-sectional nonuniformity of the beam is assumed to arise due to linear variation in thickness along the length. The material composition of the beam varies in thickness direction according to a power-law function and depends upon temperature. For the first time in case of nanobeam, the dependency of temperature has been incorporated in the analysis by using an iterative procedure for computing the material properties at current temperature instead of ambient temperature which gives a more accurate approximation for the temperature-dependent material properties. The governing equations of buckling for such a beam model have been developed using minimum energy principle and solved numerically using generalized differential quadrature method (GDQM) for three different edge conditions. A significant contribution of nonuniformity in the cross section on thermal buckling behavior of Timoshenko nanobeam has been noticed.

References

1.
Jiang
,
J. W.
,
2016
, “
Buckled Graphene for Efficient Energy Harvest, Storage and Conversion
,”
Nanotechnology
,
27
(
40
), p.
405402
.10.1088/0957-4484/27/40/405402
2.
Lee
,
Z.
,
Ophus
,
C.
,
Fischer
,
L. M.
,
Nelson-Fitzpatrick
,
N.
,
Westra
,
K. L.
,
Evoy
,
S.
,
Radmilovic
,
V.
,
Dahmen
,
U.
, and
Mitlin
,
D.
,
2006
, “
Metallic NEMS Components Fabricated From Nanocomposite Al-Mo Films
,”
Nanotechnology
,
17
(
12
), pp.
3063
3070
.10.1088/0957-4484/17/12/042
3.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys
,
54
(
9
), pp.
4703
4710
.10.1063/1.332803
4.
Yang
,
L.
,
Fan
,
T.
,
Yang
,
L.
,
Han
,
X.
, and
Chen
,
Z.
,
2017
, “
Bending of Functionally Graded Nanobeams Incorporating Surface Effects Based on Timoshenko Beam Model
,”
Theor. Appl. Mech. Lett
,
7
(
3
), pp.
152
158
.10.1016/j.taml.2017.03.001
5.
Pradhan
,
S. C.
,
2009
, “
Buckling of Single Layer Graphene Sheet Based on Nonlocal Elasticity and Higher Order Shear Deformation Theory
,”
Phys. Lett. Sect. A
,
373
(
45
), pp.
4182
4188
.10.1016/j.physleta.2009.09.021
6.
Ebrahimi
,
F.
,
Karimiasl
,
M.
, and
Ebrahimi
,
F.
,
2018
, “
Nonlocal and Surface Effects on the Buckling Behavior of Flexoelectric Sandwich Nanobeams
,”
Mech. Adv. Mater. Struct.
,
25
(
11
), pp.
943
952
.10.1080/15376494.2017.1329468
7.
Rajasekaran
,
S.
, and
Bakhshi
,
H.
,
2017
, “
Bending, Buckling and Vibration of Small-Scale Tapered Beams
,”
Int. J. Eng. Sci.
,
120
, pp.
172
188
.10.1016/j.ijengsci.2017.08.005
8.
Khaniki
,
H. B.
,
Hosseini-Hashemi
,
S.
, and
Nezamabadi
,
A.
,
2018
, “
Buckling Analysis of Nonuniform Nonlocal Strain Gradient Beams Using Generalized Differential Quadrature Method
,”
Alexandria Eng. J.
,
57
(
3
), pp.
1361
1368
.10.1016/j.aej.2017.06.001
9.
Analooei
,
H. R.
,
Azhari
,
M.
, and
Heidarpour
,
A.
,
2013
, “
Elastic Buckling and Vibration Analyses of Orthotropic Nanoplates Using Nonlocal Continuum Mechanics and Spline Finite Strip Method
,”
Appl. Math. Model.
,
37
(
10–11
), pp.
6703
6717
.10.1016/j.apm.2013.01.051
10.
Sarrami-Foroushani
,
S.
, and
Azhari
,
M.
,
2014
, “
Nonlocal Vibration and Buckling Analysis of Single and Multi-Layered Graphene Sheets Using Fi Nite Strip Method Including Van Der Waals Effects
,”
Phys. E Low-Dimens. Syst. Nanostruct.
,
57
, pp.
83
95
.10.1016/j.physe.2013.11.002
11.
Rahmani
,
O.
, and
Pedram
,
O.
,
2014
, “
Analysis and Modeling the Size Effect on Vibration of Functionally Graded Nanobeams Based on Nonlocal Timoshenko Beam Theory
,”
Int. J. Eng. Sci.
,
77
, pp.
55
70
.10.1016/j.ijengsci.2013.12.003
12.
Ebrahimi
,
F.
, and
Barati
,
M. R.
,
2018
, “
A Modified Nonlocal Couple Stress-Based Beam Model for Vibration Analysis of Higher-Order FG Nanobeams
,”
Mech. Adv. Mater. Struct.
,
25
(
13
), pp.
1121
1132
.10.1080/15376494.2017.1365979
13.
Li
,
L.
,
Li
,
X.
, and
Hu
,
Y.
,
2016
, “
Free Vibration Analysis of Nonlocal Strain Gradient Beams Made of Functionally Graded Material
,”
Int. J. Eng. Sci.
,
102
, pp.
77
92
.10.1016/j.ijengsci.2016.02.010
14.
Fu
,
Y.
,
Du
,
H.
,
Huang
,
W.
,
Zhang
,
S.
, and
Hu
,
M.
,
2004
, “
TiNi-Based Thin Films in MEMS Applications: A Review
,”
Sens. Actuators, A Phys.
,
112
(
2–3
), pp.
395
408
.10.1016/j.sna.2004.02.019
15.
Rahaeifard
,
M.
,
Kahrobaiyan
,
M. H.
, and
Ahmadian
,
M. T.
,
2009
, “
Sensitivity Analysis of Atomic Force Microscope Cantilever Made of Functionally Graded Materials
,”
ASME
Paper No. DETC2009-86254.10.1115/DETC2009-86254
16.
Zhou
,
S. M.
,
Sheng
,
L. P.
, and
Shen
,
Z. B.
,
2014
, “
Transverse Vibration of Circular Graphene Sheet-Based Mass Sensor Via Nonlocal Kirchhoff Plate Theory
,”
Comput. Mater. Sci.
,
86
, pp.
73
78
.10.1016/j.commatsci.2014.01.031
17.
Shahrjerdi
,
A. .
,
Mustapha
,
F. .
,
Bayat
,
M. .
, and
Majid
,
D. L. A.
,
2011
, “
Free Vibration Analysis of Solar Functionally Graded Plates with Temperature-Dependent Material Properties Using Second Order Shear Deformation Theory
,”
J. Mech. Sci. Technol.
,
25
(
9
), pp.
2195
2209
.10.1007/s12206-011-0610-x
18.
Ebrahimi
,
F.
,
Salari
,
E.
, and
Hosseini
,
S. A. H.
,
2015
, “
Thermomechanical Vibration Behavior of FG Nanobeams Subjected to Linear and Non-Linear Temperature Distributions
,”
J. Therm. Stress.
,
38
(
12
), pp.
1360
1386
.10.1080/01495739.2015.1073980
19.
Ebrahimi
,
F.
, and
Salari
,
E.
,
2016
, “
Effect of Various Thermal Loadings on Buckling and Vibrational Characteristics of Nonlocal Temperature-Dependent Functionally Graded Nanobeams
,”
Mech. Adv. Mater. Struct.
,
23
(
12
), pp.
1379
1397
.10.1080/15376494.2015.1091524
20.
Barati
,
M. R.
, and
Shahverdi
,
H.
,
2017
, “
An Analytical Solution for Thermal Vibration of Compositionally Graded Nanoplates With Arbitrary Boundary Conditions Based on Physical Neutral Surface Position
,”
Mech. Adv. Mater. Struct.
,
24
(
10
), pp.
840
853
.10.1080/15376494.2016.1196788
21.
Azimi
,
M.
,
Mirjavadi
,
S. S.
,
Shafiei
,
N.
,
Hamouda
,
A. M. S.
, and
Davari
,
E.
,
2018
, “
Vibration of Rotating Functionally Graded Timoshenko Nano-Beams With Nonlinear Thermal Distribution
,”
Mech. Adv. Mater. Struct.
,
25
(
6
), pp.
467
480
.10.1080/15376494.2017.1285455
22.
Ebrahimi
,
F.
,
Ehyaei
,
J.
, and
Babaei
,
R.
,
2016
, “
Thermal Buckling of FGM Nanoplates Subjected to Linear and Nonlinear Varying Loads on Pasternak Foundation
,”
Adv. Mater. Res.
,
5
(
4
), pp.
245
261
.10.12989/amr.2016.5.4.245
23.
Mirjavadi
,
S. S.
,
Afshari
,
B. M.
,
Shafiei
,
N.
,
Hamouda
,
A. M. S.
, and
Kazemi
,
M.
,
2017
, “
Thermal Vibration of Two-Dimensional Functionally Graded (2D-FG) Porous Timoshenko Nanobeams
,”
Steel Compos. Struct.
,
25
(
4
), pp.
415
426
.10.12989/scs.2017.25.4.000
24.
Shafiei
,
N.
,
Ghadiri
,
M.
, and
Mahinzare
,
M.
,
2019
, “
Flapwise Bending Vibration Analysis of Rotary Tapered Functionally Graded Nanobeam in Thermal Environment
,”
Mech. Adv. Mater. Struct.
,
26
(
2
), pp.
139
155
.10.1080/15376494.2017.1365982
25.
Lal
,
R.
, and
Dangi
,
C.
,
2019
, “
Thermal Vibrations of Temperature-Dependent Functionally Graded Non-Uniform Timoshenko Nanobeam Using Nonlocal Elasticity Theory
,”
Mater. Res. Exp.
,
6
(
7
), p.
075016
.10.1088/2053-1591/ab1332
26.
Lal
,
R.
, and
Dangi
,
C.
,
2019
, “
Thermomechanical Vibration of Bi-Directional Functionally Graded Non-Uniform Timoshenko Nanobeam Using Nonlocal Elasticity Theory
,”
Compos. Part B Eng.
,
172
(
7
), pp.
724
742
.10.1016/j.compositesb.2019.05.076
27.
Mirjavadi
,
S. S.
,
Matin
,
A.
,
Shafiei
,
N.
,
Rabby
,
S.
, and
Mohasel Afshari
,
B.
,
2017
, “
Thermal Buckling Behavior of Two-Dimensional Imperfect Functionally Graded Microscale-Tapered Porous Beam
,”
J. Therm. Stress.
,
40
(
10
), pp.
1201
1214
.10.1080/01495739.2017.1332962
28.
Rajasekaran
,
S.
, and
Khaniki
,
H. B.
,
2018
, “
Bending, Buckling and Vibration Analysis of Functionally Graded Non-Uniform Nanobeams Via Finite Element Method
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
11), p. 549
.10.1007/s40430-018-1460-6
29.
Norouzzadeh
,
A.
, and
Ansari
,
R.
,
2017
, “
Finite Element Analysis of Nano-Scale Timoshenko Beams Using the Integral Model of Nonlocal Elasticity
,”
Phys. E Low-Dimens. Syst. Nanostruct.
,
88
, pp.
194
200
.10.1016/j.physe.2017.01.006
30.
Chakraverty
,
S.
, and
Behera
,
L.
,
2014
, “
Free Vibration of Rectangular Nanoplates Using Rayleigh-Ritz Method
,”
Phys. E Low-Dimens. Syst. Nanostruct.
,
56
, pp.
357
363
.10.1016/j.physe.2013.08.014
31.
Shu
,
C.
,
2011
,
Differential Quadrature and Its Application in Engineering
,
Springer
,
London
.
32.
Arioui
,
O.
,
Belakhdar
,
K.
,
Kaci
,
A.
, and
Tounsi
,
A.
,
2018
, “
Thermal Buckling of FGM Beams Having Parabolic Thickness Variation and Temperature Dependent Materials
,”
Steel Compos. Struct.
,
27
(
6
), pp.
777
788
.10.12989/scs.2018.27.6.777
33.
Malekzadeh
,
P.
,
Vosoughi
,
A. R.
,
Sadeghpour
,
M.
, and
Vosoughi
,
H. R.
,
2014
, “
Thermal Buckling Optimization of Temperature-Dependent Laminated Composite Skew Plates
,”
J. Aerosp. Eng.
,
27
(
1
), pp.
64
75
.10.1061/(ASCE)AS.1943-5525.0000220
You do not currently have access to this content.