Abstract

This paper presents a comprehensive study revealing the influences of tire pressure variations and their distribution among four tires on vehicle dynamics performance and driver's steering workload for a four wheel independent drive electric vehicle (FWID EV). Then a direct yaw-moment control (DYC) strategy employing an unbiased adaptive model predictive control (MPC) algorithm is proposed to compensate for the influences. An unbiased estimation strategy is developed to update the time-variant prediction model for the adaptive MPC system. An extended magic formula (MF) tire model and a modified Unitire model involving tire inflation pressure are employed to describe the tire longitudinal and lateral forces, respectively. Various tire pressure variations are simulated in CarSim to exhibit the influences of tire inflation pressure, including all four tires at same and different pressures. The unbiased estimation results and compensation effects of the DYC strategy are also verified through simulations. A vehicle dynamics and lateral motion stability index, and driver's steering workload are proposed to quantify the influence of tire pressure variations and distributions. Analyses on the simulation results indicate that: pressure reduction on a front tire and rear tire induces a large steering angle and a large vehicle sideslip angle, respectively; all-tire inflation pressure decrease will increase driver's steering workload. The proposed DYC strategy can achieve satisfactory compensation effects through significantly decreasing the vehicle sideslip angle, steering wheel angle and reducing driver's steering workload by up to 90%.

References

1.
Kasprzak
,
E.
,
Lewis
,
K.
, and
Milliken
,
D.
,
2006
, “
Inflation Pressure Effects in the Nondimensional Tire Model
,”
SAE
Paper No. 2006-01-3607.10.4271/2006-01-3607
2.
Michelin Reifenwerke KGaA (Hrsg.)
,
2005
,
Der Reifen: Rollwiderstand Und Kraftstoffersparnis
,
Clermont-Ferrand
,
France
.
3.
Höpping
,
K.
,
Augsburg
,
K.
,
Hutengs
,
K.
,
Dherbomez
,
G.
,
Wang
,
B.
,
Victorino
,
A.
, and
Charara
,
A.
,
2015
, “
Analysis of the Effect of Tire Inflation Pressure on Tire Road Interaction During Braking
,”
The Dynamics of Vehicles on Roads and Tracks, 24th Symposium of the International Association for Vehicle System Dynamics (IAVSD 2015)
,
Graz, Austria
, Aug. 17–21, pp.
731
737
.
4.
Hoogh
,
D. J.
,
2005
, “
Implementing Inflation Pressure and Velocity Effects Into the Magic Formula Tyre Model
,” Master thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
5.
Schmeitz
,
A. J. C.
,
Besselink
,
I. J. M.
,
De Hoogh
,
J.
, and
Nijmeijer
,
H.
,
2005
, “
Extending the Magic Formula and SWIFT Tyre Models for Inflation Pressure Changes
,”
Vdi Berichte
,
1912
, p.
201
.https://pdfs.semanticscholar.org/11fa/d4dd50f1e4a8d129c14611c8600c5c283be3.pdf
6.
Veld
,
I. O. h.
,
2007
, “
Enhancing the MF-Swift Tyre Model for Inflation Pressure Changes
,” Master thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
7.
Besselink
,
I. J.
,
Schmeitz
,
A. J.
, and
Pacejka
,
H. B.
,
2010
, “
An Improved Magic Formula/Swift Tyre Model That Can Handle Inflation Pressure Changes
,”
Veh. Syst. Dyn.
,
48
(
Sup. 1
), pp.
337
352
.10.1080/00423111003748088
8.
Pacejka
,
H.
,
2012
,
Tire and Vehicle Dynamics
, 3rd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
9.
Schmeitz
,
A. J. C.
, and
Leneman
,
F.
,
2008
, “
MF-Tyre/MF-Swift 6.1.1, Help Manual
,”
TNO Automotive
,
Helmond, The Netherlands
.
10.
Schmeitz
,
A. J. C.
,
2013
,
MF-Tyre/MF-Swift: The Future of Tire Technology 2013
, TNO,
Charlotte, NC
.
11.
Höpping
,
K.
,
Augsburg
,
K.
, and
Büchner
,
F.
,
2018
, “
Extending the Magic Formula Tire Model for Large Inflation Pressure Changes by Using Measurement Data From a Corner Module Test Rig
,”
SAE Int. J. Passeng. Cars-Mech. Syst.
,
11
(
2
), pp.
103
118
.10.4271/06-11-02-0009
12.
Yang
,
C.
,
Xu
,
N.
, and
Guo
,
K.
,
2016
, “
Incorporating Inflation Pressure Into UniTire Model for Pure Cornering
,”
SAE
Paper No. 2016-01-8028.10.4271/2016-01-8028
13.
Lu
,
D.
, and
Guo
,
K.
,
2011
, “
Analysis and Prediction of Tire Cornering Property for Different Inflation Pressure
,”
J. Jilin Univ.
,
41
(
4
), pp.
915
920
.10.13229/j.cnki.jdxbgxb2011.04.047
14.
PArczewski
,
K.
,
2013
, “
Effect of Tyre Inflation Preassure on the Vehicle Dynamics During Braking Manouvre. eksploatacjai Niezawodnosc
,”
Maint. Reliab.
,
15
(
2
), pp.
134
139
.http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BAT6-0015-0012
15.
Savitski
,
D.
,
Hoepping
,
K.
,
Ivanov
,
V.
, and
Augsburg
,
K.
,
2015
, “
Influence of the Tire Inflation Pressure Variation on Braking Efficiency and Driving Comfort of Full Electric Vehicle With Continuous Anti-Lock Braking System
,”
SAE Int. J. Passeng. Cars—Mech. Syst.
,
8
(
2
), pp.
460
467
.10.4271/2015-01-0643
16.
Sivaramakrishnan
,
S.
,
Singh
,
K. B.
, and
Lee
,
P.
,
2015
, “
Influence of Tire Operating Conditions on ABS Performance
,”
Tire Sci. Technol.
,
43
(
3
), pp.
216
241
.https://www.tiresciencetechnology.org/doi/abs/10.2346/tire.15.430302
17.
Reiter
,
M.
, and
Wagner
,
J.
,
2010
, “
Automated Automotive Tire Inflation System–Effect of Tire Pressure on Vehicle Handling
,”
IFAC Proc. Vol.
,
43
(
7
), pp.
638
643
.10.3182/20100712-3-DE-2013.00013
18.
Al-Solihat
,
M. K.
,
Rakheja
,
S.
, and
Ahmed
,
A. K. W.
, “
Influence of Tyre Pressure on an Urban Bus Transient and Steady State Handling Performance
,”
Proc. Inst. Mech. Eng., Part D
,
224
(
7
), pp.
893
908
.10.1243/09544070JAUTO1402
19.
Wu
,
J.
,
Wang
,
Z.
, and
Wang
,
J.
, “
Influence of Tire Inflation Pressure on Vehicle Dynamics and Handling Performance
,”
ASME
Paper No. DSCC2019-9055.10.1115/DSCC2019-9055
20.
Wang
,
Z.
,
Wang
,
Y.
,
Zhang
,
L.
, and
Liu
,
M.
,
2017
, “
Vehicle Stability Enhancement Through Hierarchical Control for a Four-Wheel-Independently-Actuated Electric Vehicle
,”
Energies
,
10
(
7
), p.
947
.10.3390/en10070947
21.
Wang
,
Z.
,
Zhu
,
J.
,
Zhang
,
L.
, and
Wang
,
Y.
,
2018
, “
Automotive ABS/DYC Coordinated Control Under Complex Driving Conditions
,”
In IEEE Access
,
6
, pp.
32769
32779
.10.1109/ACCESS.2018.2834565
22.
Geng
,
C.
,
Mostefai
,
L.
,
Denaï
,
M.
, and
Hori
,
Y.
,
2009
, “
Direct Yaw-Moment Control of an in-Wheel-Motored Electric Vehicle Based on Body Slip Angle Fuzzy Observer
,”
IEEE Trans. Ind. Electron.
,
56
(
5
), pp.
1411
1419
.10.1109/TIE.2009.2013737
23.
Yuan
,
L.
,
Zhao
,
H.
,
Chen
,
H.
, and
Ren
,
B.
, “
Nonlinear MPC-Based Slip Control for Electric Vehicles With Vehicle Safety Constraints
,”
Mechatronics
,
38
, pp.
1
15
.10.1016/j.mechatronics.2016.05.006
24.
Beal
,
C. E.
, and
Gerdes
,
J. C.
,
2013
, “
Model Predictive Control for Vehicle Stabilization at the Limits of Handling
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1258
1269
.10.1109/TCST.2012.2200826
25.
Choi
,
M.
, and
Choi
,
S. B.
,
2014
, “
Model Predictive Control for Vehicle Yaw Stability With Practical Concerns
,”
IEEE Trans. Veh. Technol.
,
63
(
8
), pp.
3539
3548
.10.1109/TVT.2014.2306733
26.
Wang
,
R.
,
Jing
,
H.
,
Hu
,
C.
,
Yan
,
F.
, and
Chen
,
N.
,
2016
, “
Robust H Path Following Control for Autonomous Ground Vehicles With Delay and Data Dropout
,”
IEEE Trans. Intell. Transp. Syst
,
17
(
7
), pp.
2042
2049
.10.1109/TITS.2015.2498157
27.
Limon
,
D.
,
Alvarado
,
I.
,
Alamo
,
T.
, and
Camacho
,
E. F.
,
2008
, “
MPC for Tracking Piecewise Constant References for Constrained Linear Systems
,”
Automatica
,
44
(
9
), pp.
2382
2387
.10.1016/j.automatica.2008.01.023
28.
Zeng
,
X.
, and
Wang
,
J.
,
2015
, “
A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control With Road Grade Preview
,”
IEEE Trans. Control Syst. Technol.
,
23
(
6
), pp.
2416
2423
.10.1109/TCST.2015.2409235
29.
Guo
,
L.
,
Gao
,
B.
,
Gao
,
Y.
, and
Chen
,
H.
,
2017
, “
Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC
,”
IEEE Trans. Intell. Transportation Syst.
,
18
(
8
), pp.
2153
2162
.10.1109/TITS.2016.2634019
30.
Raffo
,
G. V.
,
Gomes
,
G. K.
,
Normey-Rico
,
J. E.
,
Kelber
,
C. R.
, and
Becker
,
L. B.
,
2009
, “
A Predictive Controller for Autonomous Vehicle Path Tracking
,”
IEEE Trans. Intell. Transportation Syst.
,
10
(
1
), pp.
92
102
.10.1109/TITS.2008.2011697
31.
Guo
,
J.
,
Luo
,
Y.
,
Li
,
K.
, and
Dai
,
Y.
,
2018
, “
Coordinated Path-Following and Direct Yaw-Moment Control of Autonomous Electric Vehicles With Sideslip Angle Estimation
,”
Mech. Syst. Signal Process.
,
105
, pp.
183
199
.10.1016/j.ymssp.2017.12.018
32.
Bakker
,
E.
,
Nyborg
,
L.
, and
Pacejka
,
H.
,
1987
, “
Tyre Modelling for Use in Vehicle Dynamics Studies
,”
SAE
Paper No. 870421.10.4271/870421
33.
Guo
,
K.
, and
Ren
,
L.
,
1999
, “
A Unified Semi-Empirical Tire Model With Higher Accuracy and Less Parameters
,”
SAE
Paper No. 1999-01-0785.
34.
Bolia
,
P.
,
Weiskircher
,
T.
, and
Müller
,
S.
,
2014
, “
Driver Steering Model for Closed-Loop Steering Function Analysis
,”
Veh. Syst. Dyn.
,
52
(
sup1
), pp.
16
30
.10.1080/00423114.2013.876502
35.
Wang
,
Z.
,
Wu
,
J.
,
Zhang
,
L.
, and
Wang
,
Y.
, “
Vehicle Sideslip Angle Estimation for a Four-Wheel-Independent-Drive Electric Vehicle Based on a Hybrid Estimator and a Moving Polynomial Kalman Smoother
,”
Proc. Inst. Mech. Eng., Part K
,
233
(
1
), pp.
125
140
.10.1177/1464419318770923
36.
Pannocchia
,
G.
, and
Rawlings
,
J. B.
,
2003
, “
Disturbance Models for Offset-Free Model Predictive Control
,”
AIChE J.
,
49
(
2
), pp.
426
437
.10.1002/aic.690490213
37.
Zhenpo
,
W.
,
Jianyang
,
W.
,
Jingna
,
Z.
,
Li
,
L.
, and
Lei
,
Z.
,
2017
, “
Direct Yaw-Moment Control of a FWIA EV Based on Sliding Model Control and Torque Allocation Optimization
,”
43rd Annual Conference of the IEEE Industrial Electronics Society
(
IECON
), Beijing, China, Oct. 29–Nov. 1, pp.
4615
4620
. 10.1109/IECON.2017.8216795
You do not currently have access to this content.