Abstract

In this paper, a class of vehicle routing problems (VRPs) is considered in which the vehicle dynamical model depends on the chosen route. Specifically, the mass of each vehicle is determined by the loading demands of the locations that the vehicle had previously visited, which leads to variable dynamical models. Hence, an integrated optimal vehicle routing-and-control problem is formulated. The objective function (total cost) considered is a weighted sum of the traveling time and energy consumption cost of the vehicles. A sequential approach can be employed to solve this problem, in which the routing solution is obtained first, followed by finding optimal control costs of all vehicles. However, the sequential approach may not obtain an overall optimal solution, since the routing solution can affect the control cost and vice versa. To the best of our knowledge, an integrated vehicle routing-and-control problem with load-dependent dynamics has not been considered in the literature. Also, there has been no simultaneous routing-and-control solution approach for such a problem. In this paper, a upper confidence bounds for trees (UCT) approach for solving the proposed problem has been implemented. Two test examples are used to demonstrate the proposed approach: (i) a benchmark VRP from the literature, revised in this paper with an embedded optimal control problem, and (ii) a notional integrated routing-and-control problem formulated for a small area based on the New York City street map. For both examples, the proposed approach obtains an improved solution when compared with the sequential approach.

References

1.
Toth
,
P.
, and
Vigo
,
D.
, eds.,
2014
,
Vehicle Routing: Problems, Methods, and Applications (MOS-SIAM Series on Optimization)
, 2nd ed.,
SIAM
,
Philadelphia, PA
.
2.
Golden
,
B. L.
,
Raghavan
,
S.
, and
Wasil
,
E. A.
, eds.,
2008
,
The Vehicle Routing Problem: Latest Advances and New Challenges
, Vol.
43
,
Springer
,
Berlin
.
3.
Laporte
,
G.
,
1992
, “
The Vehicle Routing Problem: An Overview of Exact and Approximate Algorithms
,”
Eur. J. Oper. Res.
,
59
(
3
), pp.
345
358
.10.1016/0377-2217(92)90192-C
4.
Toth
,
P.
, and
Vigo
,
D.
,
2002
, “
Models, Relaxations and Exact Approaches for the Capacitated Vehicle Routing Problem
,”
Discrete Appl. Math.
,
123
(
1–3
), pp.
487
512
.10.1016/S0166-218X(01)00351-1
5.
Ralphs
,
T. K.
,
Kopman
,
L.
,
Pulleyblank
,
W. R.
, and
Trotter
,
L. E.
,
2003
, “
On the Capacitated Vehicle Routing Problem
,”
Math. Program.
,
94
(
2–3
), pp.
343
359
.10.1007/s10107-002-0323-0
6.
Baldacci
,
R.
,
Mingozzi
,
A.
, and
Roberti
,
R.
,
2012
, “
Recent Exact Algorithms for Solving the Vehicle Routing Problem Under Capacity and Time Window Constraints
,”
Eur. J. Oper. Res.
,
218
(
1
), pp.
1
6
.10.1016/j.ejor.2011.07.037
7.
Kallehauge
,
B.
,
Larsen
,
J.
,
Madsen
,
O. B.
, and
Solomon
,
M. M.
,
2005
, “
Vehicle Routing Problem With Time Windows
,”
Column Generation
,
Springer
,
Boston, MA
, pp.
67
98
.
8.
Scanlon
,
R.
,
Wang
,
Q.
, and
Wang
,
J.
,
2016
, “
Ant Colony Optimisation Model for Vehicle Routing Problem With Simultaneous Pickup and Delivery
,”
ASME Paper No. DETC2016-59951
.10.1115/DETC2016-59951
9.
Manyam
,
S. G.
,
Rathinam
,
S.
,
Darbha
,
S.
, and
Obermeyer
,
K. J.
,
2012
, “
Computation of a Lower Bound for a Vehicle Routing Problem With Motion Constraints
,”
ASME Paper No. DSCC2012-MOVIC2012-8713
.10.1115/DSCC2012-MOVIC2012-8713
10.
Manyam
,
S. G.
,
Rathinam
,
S.
, and
Darbha
,
S.
,
2015
, “
Computation of Lower Bounds for a Multiple Depot, Multiple Vehicle Routing Problem With Motion Constraints
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
9
), p.
094501
.10.1115/1.4030354
11.
Scholz-Reiter
,
B.
,
Rekersbrink
,
H.
,
Wenning
,
B. L.
, and
Makuschewitz
,
T.
,
2008
, “
A Survey of Autonomous Control Algorithms by Means of Adapted Vehicle Routing Problems
,”
ASME Paper No. ESDA2008-59077
.10.1115/ESDA2008-59077
12.
Barth
,
M.
,
Younglove
,
T.
, and
Scora
,
G.
,
2005
, “
Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model
,”
California PATH Program, Institute of Transportation Studies
,
University of California at Berkeley
,
Berkeley
, CA, Report No. UCB-ITS-PRR-2005-1. https://escholarship.org/uc/item/67f0v3zf
13.
Barth
,
M.
, and
Boriboonsomsin
,
K.
,
2009
, “
Energy and Emissions Impacts of a Freeway-Based Dynamic Eco-Driving System
,”
Transp. Res., Part D
,
14
(
6
), pp.
400
410
.10.1016/j.trd.2009.01.004
14.
Bektaş
,
T.
, and
Laporte
,
G.
,
2011
, “
The Pollution-Routing Problem
,”
Transp. Res. Part B
,
45
(
8
), pp.
1232
1250
.10.1016/j.trb.2011.02.004
15.
Xiao
,
Y.
,
Zhao
,
Q.
,
Kaku
,
I.
, and
Xu
,
Y.
,
2012
, “
Development of a Fuel Consumption Optimization Model for the Capacitated Vehicle Routing Problem
,”
Comput. Oper. Res.
,
39
(
7
), pp.
1419
1431
.10.1016/j.cor.2011.08.013
16.
Franceschetti
,
A.
,
Honhon
,
D.
,
Van Woensel
,
T.
,
Bektaş
,
T.
, and
Laporte
,
G.
,
2013
, “
The Time-Dependent Pollution-Routing Problem
,”
Transp. Res. Part B
,
56
, pp.
265
293
.10.1016/j.trb.2013.08.008
17.
Jabali
,
O.
,
Woensel
,
T.
, and
De Kok
,
A. G.
,
2012
, “
Analysis of Travel Times and CO2 Emissions in Time‐Dependent Vehicle Routing
,”
Prod. Oper. Manage.
,
21
(
6
), pp.
1060
1074
.10.1111/j.1937-5956.2012.01338.x
18.
Qian
,
J.
, and
Eglese
,
R.
,
2014
, “
Finding Least Fuel Emission Paths in a Network With Time‐Varying Speeds
,”
Networks
,
63
(
1
), pp.
96
106
.10.1002/net.21524
19.
Qian
,
J.
, and
Eglese
,
R.
,
2016
, “
Fuel Emissions Optimization in Vehicle Routing Problems With Time-Varying Speeds
,”
Eur. J. Oper. Res.
,
248
(
3
), pp.
840
848
.10.1016/j.ejor.2015.09.009
20.
Fukasawa
,
R.
,
He
,
Q.
,
Santos
,
F.
, and
Song
,
Y.
,
2018
, “
A Joint Routing and Speed Optimization Problem
,”
INFORMS J. Comput.
, 30(4), pp. 694–709. 10.1287/ijoc.2018.0810
21.
Demir
,
E.
,
Bektaş
,
T.
, and
Laporte
,
G.
,
2014
, “
The bi-Objective Pollution-Routing Problem
,”
Eur. J. Oper. Res.
,
232
(
3
), pp.
464
478
.10.1016/j.ejor.2013.08.002
22.
Oberscheider
,
M.
,
Zazgornik
,
J.
,
Henriksen
,
C. B.
,
Gronalt
,
M.
, and
Hirsch
,
P.
,
2013
, “
Minimizing Driving Times and Greenhouse Gas Emissions in Timber Transport With a Near-Exact Solution Approach
,”
Scand. J. Res.
,
28
(
5
), pp.
493
506
.10.1080/02827581.2012.758309
23.
Baum
,
M.
,
Dibbelt
,
J.
,
Hübschle-Schneider
,
L.
,
Pajor
,
T.
, and
Wagner
,
D.
,
2014
, “
Speed-Consumption Tradeoff for Electric Vehicle Route Planning
,”
Proceedings of the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'14)
(OpenAccess Series in Informatics, Vol.
42
),
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
,
Dagstuhl, Germany
, pp.
138
151
.
24.
Schneider
,
M.
,
Stenger
,
A.
, and
Goeke
,
D.
,
2014
, “
The Electric Vehicle-Routing Problem With Time Windows and Recharging Stations
,”
Transp. Sci.
,
48
(
4
), pp.
500
520
.10.1287/trsc.2013.0490
25.
Arslan
,
O.
,
Yıldız
,
B.
, and
Karaşan
,
O. E.
,
2015
, “
Minimum Cost Path Problem for Plug-In Hybrid Electric Vehicles
,”
Transp. Res. Part E
,
80
, pp.
123
141
.10.1016/j.tre.2015.05.011
26.
Lin
,
J.
,
Zhou
,
W.
, and
Wolfson
,
O.
,
2016
, “
Electric Vehicle Routing Problem
,”
Transp. Res. Procedia
,
12
, pp.
508
521
.10.1016/j.trpro.2016.02.007
27.
Worley
,
O.
,
Klabjan
,
D.
, and
Sweda
,
T. M.
,
2012
, “
Simultaneous Vehicle Routing and Charging Station Siting for Commercial Electric Vehicles
,”
IEEE International on Electric Vehicle Conference
,
Greenville, SC
, Mar. 4–8, pp.
1
3
.10.1109/IEVC.2012.6183279
28.
Zachariadis
,
E. E.
,
Tarantilis
,
C. D.
, and
Kiranoudis
,
C. T.
,
2015
, “
The Load-Dependent Vehicle Routing Problem and Its Pick-Up and Delivery Extension
,”
Transp. Res. Part B
,
71
, pp.
158
181
.10.1016/j.trb.2014.11.004
29.
Mańdziuk
,
J.
, and
Nejman
,
C.
,
2015
, “
UCT-Based Approach to Capacitated Vehicle Routing Problem
,”
International Conference on Artificial Intelligence and Soft Computing
,
Zakopane, Poland
, June 14–18, S
pringer
,
Cham, Switzerland, pp. 679–690
.
30.
Edelkamp
,
S.
,
Gath
,
M.
,
Greulich
,
C.
,
Humann
,
M.
,
Herzog
,
O.
, and
Lawo
,
M.
,
2016
, “
Monte Carlo Tree Search for Logistics
,”
Commercial Transport
,
Springer
,
Cham, Switzerland
, pp.
427
440
.
31.
Mańdziuk
,
J.
, and
Świechowski
,
M.
,
2017
, “
UCT in Capacitated Vehicle Routing Problem With Traffic Jams
,”
Inf. Sci.
,
406
, pp.
42
56
.10.1016/j.ins.2017.04.020
32.
Liu
,
T.
,
Azarm
,
S.
, and
Chopra
,
N.
,
2018
, “
Integrating Multi-Vehicle Routing and Control: A Comparison of Three Solution Strategies
,”
ASME Paper No. DETC2018-85624.
33.
Bock
,
H. G.
, and
Plitt
,
K. J.
,
1984
, “
A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems
,”
IFAC Proc. Vol.
,
17
(
2
), pp.
1603
1608
.10.1016/S1474-6670(17)61205-9
34.
Rao
,
A. V.
,
2009
, “
A Survey of Numerical Methods for Optimal Control
,”
Adv. Astronautical Sci.
,
135
(
1
), pp.
497
528
.http://www.anilvrao.com/Publications/ConferencePublications/trajectorySurveyAAS.pdf
35.
Moin
,
P.
,
2010
,
Fundamentals of Engineering Numerical Analysis
,
Cambridge University Press
,
Cambridge, UK
.
36.
Solomon
,
M. M.
,
1987
, “
Algorithms for the Vehicle Routing and Scheduling Problems With Time Window Constraints
,”
Oper. Res.
,
35
(
2
), pp.
254
265
.10.1287/opre.35.2.254
37.
Gurobi Optimization
,
2019
, “
Gurobi Optimizer Reference Manual, Ver. 9
,”
Gurobi Optimization, LLC
,
Houston, TX
.
You do not currently have access to this content.