Abstract

As wind energy becomes a larger part of the world's energy portfolio, the control of wind turbines is still confronted with challenges including wind speed randomness and high system uncertainties. In this study, a novel pitch angle controller based on effective wind speed estimation (EWSE) and uncertainty and disturbance estimator (UDE) is proposed for wind turbine systems (WTS) operating in above-rated wind speed region. The controller task is to maintain the WTS's generator power and rotor speed at their prescribed references, without measuring the wind speed information and accurate system model. This attempt also aims to bring a systematic solution to deal with different system characteristics over wide working range, including extreme and dynamic environmental conditions. First, support vector machine (SVR) based EWSE model is developed to estimate the effective wind speed in an online manner. Second, by integrating an UDE and EWSE model into the controller, highly turbulent and unpredictable dynamics introduced by wind speed and internal uncertainties is compensated. Rigid theoretical analysis guarantees the stability of the overall system. Finally, the performance of the novel pitch control scheme is testified via the professional Garrad Hassan (GH) bladed simulation platform with various working scenarios. The results reveal that the proposed approach achieves better performance in contrast to traditional L1 adaptive and proportional-integral (PI) pitch angle controllers.

References

1.
Wang
,
N.
,
Wright
,
A. D.
, and
Balas
,
M. J.
,
2017
, “
Disturbance Accommodating Control Design for Wind Turbines Using Solvability Conditions
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
4
), p.
041007
.10.1115/1.4035097
2.
WWEA
,
2019
, “
Wind Power Capacity Worldwide Reaches 597 GW, 50.1 GW Added in 2018
,” WWEA, Bonn, Germany, accessed Sept. 1, 2019, https://wwindea.org/blog/2019/02/25/wind-power-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018/
3.
Muhando
,
E. B.
,
Senjyu
,
T.
,
Uehara
,
A.
, and
Funabashi
,
T.
,
2011
, “
Gain-Scheduled Control for WECS Via LMI Techniques and Parametrically Dependent Feedback—Part II: Controller Design and Implementation
,”
IEEE Trans. Ind. Electron.
,
58
(
1
), pp.
57
65
.10.1109/TIE.2010.2045414
4.
Van
,
T. L.
,
Nguyen
,
T. H.
, and
Lee
,
D.-C.
,
2015
, “
Advanced Pitch Angle Control Based on Fuzzy Logic for Variable-Speed Wind Turbine Systems
,”
IEEE Trans. Energy Convers.
,
30
(
2
), pp.
578
587
.10.1109/TEC.2014.2379293
5.
Semrau
,
G.
,
Rimkus
,
S.
, and
Das
,
T.
,
2015
, “
Nonlinear Systems Analysis and Control of Variable Speed Wind Turbines for Multiregime Operation
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
4
), p.
041007
.10.1115/1.4028775
6.
Kumar
,
D.
, and
Chatterjee
,
K.
,
2016
, “
A Review of Conventional and Advanced MPPT Algorithms for Wind Energy Systems
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
957
970
.10.1016/j.rser.2015.11.013
7.
Meng
,
W.
,
Yang
,
Q.
, and
Sun
,
Y.
,
2016
, “
Guaranteed Performance Control of DFIG Variable-Speed Wind Turbines
,”
IEEE Trans. Control Syst. Technol.
,
24
(
6
), pp.
2215
2223
.10.1109/TCST.2016.2524531
8.
Luo
,
Q.
,
Yang
,
Q.
,
Han
,
C.
, and
Cheng
,
P.
,
2014
, “
Pitch Angle Controller of Variable-Speed Wind Turbine Based on L1 Adaptive Control Theory
,” International Conference on Mechatronics and Control (
ICMC
)
, Jinzhou, China
, July 3–5, pp.
955
960
.10.1109/ICMC.2014.7231695
9.
Zhang
,
J.
,
Xiong
,
J.
,
Ren
,
M.
,
Shi
,
Y.
, and
Xu
,
J.
,
2016
, “
Filter-Based Fault Diagnosis of Wind Energy Conversion Systems Subject to Sensor Faults
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
6
), p.
061008
.10.1115/1.4032827
10.
Hall
,
J. F.
, and
Chen
,
D.
,
2013
, “
Dynamic Optimization of Drivetrain Gear Ratio to Maximize Wind Turbine Power Generation—Part 1: System Model and Control Framework
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
1
), p.
011016
.10.1115/1.4006882
11.
Ma
,
Z.
,
Shaltout
,
M. L.
, and
Chen
,
D.
,
2015
, “
An Adaptive Wind Turbine Controller Considering Both the System Performance and Fatigue Loading
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
11
), p.
111007
.10.1115/1.4031045
12.
Beltran
,
B.
,
Ahmed-Ali
,
T.
, and
Benbouzid
,
M. E. H.
,
2008
, “
Sliding Mode Power Control of Variable-Speed Wind Energy Conversion Systems
,”
IEEE Trans. Energy Convers.
,
23
(
2
), pp.
551
558
.10.1109/TEC.2007.914163
13.
Chen
,
J.
,
Lin
,
T.
,
Wen
,
C.
, and
Song
,
Y.
,
2016
, “
Design of a Unified Power Controller for Variable-Speed Fixed-Pitch Wind Energy Conversion System
,”
IEEE Trans. Ind. Electron.
,
63
(
8
), pp.
4899
4908
.10.1109/TIE.2016.2547365
14.
Hand
,
M. M.
,
1999
, “
Variable-Speed Wind Turbine Controller Systematic Design Methodology: A Comparison of Non-Linear and Linear Model-Based Designs
,”
National Renewable Energy Lab.
,
Golden, CO
, Technical Report No.
NREL/TP-500-25540
.https://www.nrel.gov/docs/fy99osti/25540.pdf
15.
Shaked
,
U.
, and
Soroka
,
E.
,
1985
, “
On the Stability Robustness of the Continuous-Time LQG Optimal Control
,”
IEEE Trans. Autom. Control
,
30
(
10
), pp.
1039
1043
.10.1109/TAC.1985.1103811
16.
Stol
,
K.
, and
Fingersh
,
L.
,
2004
, “
Wind Turbine Field Testing of State-Space Control Designs
,”
National Renewable Energy Laboratory
,
Golden, CO
, Report No.
NREL/SR-500-35061
.https://www.nrel.gov/docs/fy04osti/35061.pdf
17.
Muhando
,
E. B.
,
Senjyu
,
T.
,
Uehara
,
A.
,
Funabashi
,
T.
, and
Kim
,
C.-H.
,
2009
, “
LQG Design for Megawatt-Class WECS With DFIG Based on Functional Models' Fidelity Prerequisites
,”
IEEE Trans. Energy Convers.
,
24
(
4
), pp.
893
904
.10.1109/TEC.2009.2025338
18.
Meng
,
W.
,
Yang
,
Q.
,
Ying
,
Y.
,
Sun
,
Y.
,
Yang
,
Z.
, and
Sun
,
Y.
,
2013
, “
Adaptive Power Capture Control of Variable-Speed Wind Energy Conversion Systems With Guaranteed Transient and Steady-State Performance
,”
IEEE Trans. Energy Convers.
,
28
(
3
), pp.
716
725
.10.1109/TEC.2013.2273357
19.
Fan
,
B.
,
Yang
,
Q.
,
Jagannathan
,
S.
, and
Sun
,
Y.
,
2018
, “
Asymptotic Tracking Controller Design for Nonlinear Systems With Guaranteed Performance
,”
IEEE Trans. Cybern.
,
48
(
7
), pp.
2001
2011
.10.1109/TCYB.2017.2726039
20.
Yan
,
L.
,
Chen
,
X.
,
Zhou
,
X.
,
Sun
,
H.
, and
Jiang
,
L.
,
2018
, “
Perturbation Compensation-Based Non-Linear Adaptive Control of ESS-DVR for the LVRT Capability Improvement of Wind Farms
,”
IET Renewable Power Gener.
,
12
(
13
), pp.
1500
1507
.10.1049/iet-rpg.2017.0839
21.
Senjyu
,
T.
,
Sakamoto
,
R.
,
Urasaki
,
N.
,
Funabashi
,
T.
,
Fujita
,
H.
, and
Sekine
,
H.
,
2006
, “
Output Power Leveling of Wind Turbine Generator for All Operating Regions by Pitch Angle Control
,”
IEEE Trans. Energy Convers.
,
21
(
2
), pp.
467
475
.10.1109/TEC.2006.874253
22.
Beltran
,
B.
,
Ahmed-Ali
,
T.
, and
Benbouzid
,
M.
,
2009
, “
High-Order Sliding-Mode Control of Variable-Speed Wind Turbines
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3314
3321
.10.1109/TIE.2008.2006949
23.
Jafarnejadsani
,
H.
,
Pieper
,
J.
, and
Ehlers
,
J.
,
2013
, “
Adaptive Control of a Variable-Speed Variable-Pitch Wind Turbine Using Radial-Basis Function Neural Network
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2264
2272
.10.1109/TCST.2012.2237518
24.
Magar
,
K. T.
, and
Balas
,
M. J.
,
2015
, “
Adaptive Individual Blade Pitch Control for Large Wind Turbines With LiDAR Measurement of Wind Speed
,”
AIAA
Paper No. 2015-1212.10.2514/6.2015-1212
25.
Lasheen
,
A.
, and
Elshafei
,
A. L.
,
2016
, “
Wind-Turbine Collective-Pitch Control Via a Fuzzy Predictive Algorithm
,”
Renewable Energy
,
87
, pp.
298
306
.10.1016/j.renene.2015.10.030
26.
Soltani
,
M. N.
,
Knudsen
,
T.
,
Svenstrup
,
M.
,
Wisniewski
,
R.
,
Brath
,
P.
,
Ortega
,
R.
, and
Johnson
,
K.
,
2013
, “
Estimation of Rotor Effective Wind Speed: A Comparison
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1155
1167
.10.1109/TCST.2013.2260751
27.
Song
,
D.
,
Yang
,
J.
,
Cai
,
Z.
,
Dong
,
M.
,
Su
,
M.
, and
Wang
,
Y.
,
2017
, “
Wind Estimation With a Non-Standard Extended Kalman Filter and Its Application on Maximum Power Extraction for Variable Speed Wind Turbines
,”
Appl. Energy
,
190
, pp.
670
685
.10.1016/j.apenergy.2016.12.132
28.
Qiao
,
W.
,
Zhou
,
W.
,
Aller
,
J. M.
, and
Harley
,
R. G.
,
2008
, “
Wind Speed Estimation Based Sensorless Output Maximization Control for a Wind Turbine Driving a DFIG
,”
IEEE Trans. Power Electron.
,
23
(
3
), pp.
1156
1169
.10.1109/TPEL.2008.921185
29.
Li
,
D.-Y.
,
Cai
,
W.-C.
,
Li
,
P.
,
Jia
,
Z.-J.
,
Chen
,
H.-J.
, and
Song
,
Y.-D.
,
2016
, “
Neuroadaptive Variable Speed Control of Wind Turbine With Wind Speed Estimation
,”
IEEE Trans. Ind. Electron.
,
63
(
12
), pp.
7754
7764
.10.1109/TIE.2016.2591900
30.
Geng
,
H.
, and
Yang
,
G.
,
2010
, “
Output Power Control for Variable-Speed Variable-Pitch Wind Generation Systems
,”
IEEE Trans. Energy Convers.
,
25
(
2
), pp.
494
503
.10.1109/TEC.2009.2034366
31.
Inthamoussou
,
F. A.
,
Bianchi
,
F. D.
,
Battista
,
H. D.
, and
Mantz
,
R. J.
,
2014
, “
LPV Wind Turbine Control With Anti-Windup Features Covering the Complete Wind Speed Range
,”
IEEE Trans. Energy Convers.
,
29
(
1
), pp.
259
266
.10.1109/TEC.2013.2294212
32.
Yang
,
Q.
,
Jagannathan
,
S.
, and
Sun
,
Y.
,
2015
, “
Robust Integral of Neural Network and Error Sign Control of MIMO Nonlinear Systems
,”
IEEE Trans. Neural Networks Learn. Syst.
,
26
(
12
), pp.
3278
3286
.10.1109/TNNLS.2015.2470175
33.
Lin
,
S.-W.
,
Ying
,
K.-C.
,
Chen
,
S.-C.
, and
Lee
,
Z.-J.
,
2008
, “
Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines
,”
Expert Syst. Appl.
,
35
(
4
), pp.
1817
1824
.10.1016/j.eswa.2007.08.088
34.
Ren
,
B.
,
Zhong
,
Q.-C.
, and
Chen
,
J.
,
2015
, “
Robust Control for a Class of Nonaffine Nonlinear Systems Based on the Uncertainty and Disturbance Estimator
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5881
5888
.10.1109/TIE.2015.2421884
35.
Bossanyi
,
E.
,
2009
,
GH Bladed User Manual
,
Garrad Hassan Bladed
,
Bristol, UK
.
36.
Hansen
,
M. H.
, and
Zahle
,
F.
,
2011
,
Aeroelastic Optimization of MW Wind Turbines
,
Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi
,
Copenhagen, Denmark
.
37.
Jiao
,
X.
,
Meng
,
W.
,
Yang
,
Q.
,
Fu
,
L.
, and
Chen
,
Q.
,
2019
, “
Adaptive Continuous Neural Pitch Angle Control for Variable-Speed Wind Turbines
,”
Asian J. Control
,
21
(
4
), p.
1966
.10.1002/asjc.1963
You do not currently have access to this content.