Abstract

Rehabilitation robots have become an influential tool in physiotherapy treatment because they are able to provide intensive rehabilitation treatment over a long period of time. However, this technology still suffers from various problems such as dynamic uncertainties, external disturbances, and human–robot interaction. In this paper, we propose a robust adaptive control approach of an exoskeleton robot with an unknown dynamic model and external disturbances. First, the dynamics of the exoskeleton's arm is presented. Then, we design a robust adaptive sliding mode control in which the parameter uncertainties and the disturbances are estimated by the adaptive update methods. The proposed control ensures a good tracking of the system with a finite time convergence of sliding surface to zero. Throughout this paper, the designed control law and the global stability analysis are formulated and demonstrated based on the appropriate choice of the candidate Lyapunov function. The experimental and comparative results, performed for seven degrees-of-freedom (DOFs) exoskeleton arm with three healthy subjects to track a passive rehabilitation motion, confirm the effectiveness and robustness of the proposed control law compared with conventional adaptive approach.

References

1.
Johnson
,
M. J.
,
Loureiro
,
R. C.
, and
Harwin
,
W. S.
,
2008
, “
Collaborative Tele-Rehabilitation and Robot-Mediated Therapy for Stroke Rehabilitation at Home or Clinic
,”
Intell. Serv. Rob.
,
1
(
2
), pp.
109
121
.10.1007/s11370-007-0010-3
2.
Krebs
,
H. I.
, and
Hogan
,
N.
,
2006
, “
Therapeutic Robotics: A Technology Push
,”
Proc. IEEE
,
94
(
9
), pp.
1727
1738
.10.1109/JPROC.2006.880721
3.
Molinari
,
M.
,
Esquenazi
,
A.
,
Anastasi
,
A. A.
,
Nielsen
,
R. K.
,
Stoller
,
O.
,
D'Andrea
,
A.
, and
Calatayud
,
M. B.
,
2016
, “
Rehabilitation Technologies Application in Stroke and Traumatic Brain Injury Patients
,”
Emerging Therapies in Neurorehabilitation II
,
Springer
,
Cham, Switzerland
, pp.
29
64
.
4.
Du
,
G.
, and
Zhang
,
P.
,
2015
, “
A Markerless Human-Robot Interface Using Particle Filter and Kalman Filter for Dual Robots
,”
IEEE Trans. Ind. Electron.
,
62
(
4
), pp.
2257
2264
.10.1109/TIE.2014.2362095
5.
Slotine
,
J.-J. E.
,
Li
,
W.
, et al.,
1991
,
Applied Nonlinear Control
, Vol.
199
,
Prentice Hall
,
Englewood Cliffs, NJ
.
6.
Khalil
,
H. K.
,
1996
,
Nonlinear Systems
, Vol.
2
,
Prentice Hall
,
New Jersey
.
7.
Rahman
,
M. H.
,
Saad
,
M.
,
Kenné
,
J.-P.
, and
Archambault
,
P. S.
,
2013
, “
Control of an Exoskeleton Robot Arm With Sliding Mode Exponential Reaching Law
,”
Int. J. Control, Autom. Syst.
,
11
(
1
), pp.
92
104
.10.1007/s12555-011-0135-1
8.
Ueda
,
J.
,
Ming
,
D.
,
Krishnamoorthy
,
V.
,
Shinohara
,
M.
, and
Ogasawara
,
T.
,
2010
, “
Individual Muscle Control Using an Exoskeleton Robot for Muscle Function Testing
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
4
), pp.
339
350
.10.1109/TNSRE.2010.2047116
9.
Lee
,
B.-K.
,
Lee
,
H.-D.
,
Lee
,
J.-Y.
,
Shin
,
K.
,
Han
,
J.-S.
, and
Han
,
C.-S.
,
2012
, “
Development of Dynamic Model-Based Controller for Upper Limb Exoskeleton Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
3173
3178
.10.1109/ICRA.2012.6224675
10.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
11.
Khan
,
A. M.
,
Yun
,
D.-W.
,
Zuhaib
,
K. M.
,
Iqbal
,
J.
,
Yan
,
R.-J.
,
Khan
,
F.
, and
Han
,
C.
,
2017
, “
Estimation of Desired Motion Intention and Compliance Control for Upper Limb Assist Exoskeleton
,”
Int. J. Control, Autom. Syst.
,
15
(
2
), pp.
802
814
.10.1007/s12555-015-0151-7
12.
Khan
,
A. M.
,
Usman
,
M.
,
Ali
,
A.
,
Khan
,
F.
,
Yaqub
,
S.
, and
Han
,
C.
,
2016
, “
Muscle Circumference Sensor and Model Reference-Based Adaptive Impedance Control for Upper Limb Assist Exoskeleton Robot
,”
Adv. Rob.
,
30
(
24
), pp.
1515
1529
.10.1080/01691864.2016.1251335
13.
Khan
,
A. M.
,
Yun
,
D.-W.
,
Ali
,
M. A.
,
Zuhaib
,
K. M.
,
Yuan
,
C.
,
Iqbal
,
J.
,
Han
,
J.
,
Shin
,
K.
, and
Han
,
C.
,
2016
, “
Passivity Based Adaptive Control for Upper Extremity Assist Exoskeleton
,”
Int. J. Control, Autom. Syst.
,
14
(
1
), pp.
291
300
.10.1007/s12555-014-0250-x
14.
Yang
,
F.
,
He
,
J.
, and
Wang
,
D.
,
2017
, “
New Stability Criteria of Delayed Load Frequency Control Systems Via Infinite-Series-Based Inequality
,”
IEEE Trans. Ind. Inf.
,
14
(
1
), pp.
231
240
.10.1109/TII.2017.2751510
15.
Huang
,
A.-C.
, and
Chien
,
M.-C.
,
2010
,
Adaptive Control of Robot Manipulators: A Unified Regressor-Free Approach
,
World Scientific
,
Singapore
.
16.
Brahmi
,
B.
,
Saad
,
M.
,
Ochoa-Luna
,
C.
,
Rahman
,
M. H.
, and
Brahmi
,
A.
,
2018
, “
Adaptive Tracking Control of an Exoskeleton Robot With Uncertain Dynamics Based on Estimated Time-Delay Control
,”
IEEE/ASME Trans. Mechatronics
,
23
(
2
), pp.
575
585
.10.1109/TMECH.2018.2808235
17.
Brahmi
,
B.
,
Saad
,
M.
,
Lam
,
J. T. A. T.
,
Luna
,
C. O.
,
Archambault
,
P. S.
, and
Rahman
,
M. H.
,
2018
, “
Adaptive Control of a 7-DOF Exoskeleton Robot With Uncertainties on Kinematics and Dynamics
,”
Eur. J. Control
,
42
, pp.
77
87
.10.1016/j.ejcon.2018.03.002
18.
Yang
,
F.
,
He
,
J.
, and
Wang
,
D.
,
2018
, “
New Stability Criteria of Delayed Load Frequency Control Systems Via Infinite-Series-Based Inequality
,”
IEEE Trans. Ind. Inf.
,
14
(
1
), pp.
231
240
.
19.
Luna
,
C. O.
,
Rahman
,
M. H.
,
Saad
,
M.
,
Archambault
,
P.
, and
Zhu
,
W.-H.
,
2016
, “
Virtual Decomposition Control of an Exoskeleton Robot Arm
,”
Robotica
,
34
(
7
), pp.
1587
1609
.10.1017/S026357471400246X
20.
Ochoa Luna
,
C.
,
Habibur Rahman
,
M.
,
Saad
,
M.
,
Archambault
,
P. S.
, and
Bruce Ferrer
,
S.
,
2015
, “
Admittance-Based Upper Limb Robotic Active and Active-Assistive Movements
,”
Int. J. Adv. Rob. Syst.
,
12
(
9
), p.
117
.10.5772/60784
21.
Aviles
,
L. A. Z.
,
Ortega
,
J. C. P.
, and
Hurtado
,
E. G.
,
2012
, “
Experimental Study of the Methodology for the Modelling and Simulation of Mobile Manipulators
,”
Int. J. Adv. Rob. Syst.
,
9
(
5
), p.
192
.10.5772/51867
22.
Brahmi
,
A.
,
Saad
,
M.
,
Gauthier
,
G.
,
Brahmi
,
B.
,
Zhu
,
W.-H.
, and
Ghommam
,
J.
,
2016
, “
Adaptive Backstepping Control of Mobile Manipulator Robot Based on Virtual Decomposition Approach
,”
Eighth International Conference on Modelling, Identification and Control
(
ICMIC
), Algiers, Algeria, Nov. 15–17, pp.
707
712
.10.1109/ICMIC.2016.7804203
23.
Chen
,
W.
,
Ge
,
S. S.
,
Wu
,
J.
, and
Gong
,
M.
,
2015
, “
Globally Stable Adaptive Backstepping Neural Network Control for Uncertain Strict-Feedback Systems With Tracking Accuracy Known a Priori
,”
IEEE Trans. Neural Networks Learning Syst.
,
26
(
9
), pp.
1842
1854
.10.1109/TNNLS.2014.2357451
24.
Li
,
Z.
,
Huang
,
Z.
,
He
,
W.
, and
Su
,
C.-Y.
,
2017
, “
Adaptive Impedance Control for an Upper Limb Robotic Exoskeleton Using Biological Signals
,”
IEEE Trans. Ind. Electron.
,
64
(
2
), pp.
1664
1674
.10.1109/TIE.2016.2538741
25.
Li
,
Z.
,
Su
,
C.-Y.
,
Li
,
G.
, and
Su
,
H.
,
2015
, “
Fuzzy Approximation-Based Adaptive Backstepping Control of an Exoskeleton for Human Upper Limbs
,”
IEEE Trans. Fuzzy Syst.
,
23
(
3
), pp.
555
566
.10.1109/TFUZZ.2014.2317511
26.
Soualhi
,
A.
,
Makdessi
,
M.
,
German
,
R.
,
Echeverría
,
F. R.
,
Razik
,
H.
,
Sari
,
A.
,
Venet
,
P.
, and
Clerc
,
G.
,
2018
, “
Heath Monitoring of Capacitors and Supercapacitors Using the Neo-Fuzzy Neural Approach
,”
IEEE Trans. Ind. Inf.
,
14
(
1
), pp.
24
34
.10.1109/TII.2017.2701823
27.
Zine
,
W.
,
Makni
,
Z.
,
Monmasson
,
E.
,
Idkhajine
,
L.
, and
Condamin
,
B.
,
2018
, “
Interests and Limits of Machine Learning-Based Neural Networks for Rotor Position Estimation in EV Traction Drives
,”
IEEE Trans. Ind. Inf.
,
14
(
5
), pp.
1942
1951
.10.1109/TII.2017.2765398
28.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
, Vol.
3
,
Pearson/Prentice Hall
,
Upper Saddle River, NJ
.
29.
Rahman
,
M. H.
,
Rahman
,
M. J.
,
Cristobal
,
O.
,
Saad
,
M.
,
Kenné
,
J.-P.
, and
Archambault
,
P. S.
,
2015
, “
Development of a Whole Arm Wearable Robotic Exoskeleton for Rehabilitation and to Assist Upper Limb Movements
,”
Robotica
,
33
(
1
), pp.
19
39
.10.1017/S0263574714000034
30.
Nakamura
,
Y.
, and
Hanafusa
,
H.
,
1986
, “
Inverse Kinematic Solutions With Singularity Robustness for Robot Manipulator Control
,”
ASME J. Dyn. Syst. Meas. Control
,
108
(
3
), pp.
163
171
.10.1115/1.3143764
31.
Wang
,
H.
,
Han
,
Z.-Z.
,
Xie
,
Q.-Y.
, and
Zhang
,
W.
,
2009
, “
Finite-Time Chaos Synchronization of Unified Chaotic System With Uncertain Parameters
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
2239
2247
.10.1016/j.cnsns.2008.04.015
You do not currently have access to this content.