In this paper, the six-wheel lunar rover is simulated in Adams/View software environment and then via co-simulation between adams and matlab/simulink with which a path-following controller is designed and implemented on the rocker-bogie mechanism. The proposed algorithm consists of three parts. First, the inverse kinematic equations are used to transform the trajectory into appropriate desired values. Second, a sliding mode controller (SMC) is designed which used the desired values to control the motion of the robot. Moreover, disturbances are taken into consideration to minimize the lateral error. In order to investigate the proposed integrated algorithm, the analysis of rover traversability on the uneven surface of the moon is performed in two different states, namely by considering the motion restrictions of the rocker-bogie mechanisms and by increasing the rover speed, body yaw angle, and also obstacle height in crossing the rough terrain. Investigation of the rover in different states has given insight on the performance of the proposed controller at limits of mobility of the robot. Finally, to reduce the battery energy consumption, input torques proportional to the load on the wheels are produced. The values of the deviations from the desired path and velocity in all the mentioned analyses indicate the effectiveness of the SMC.

References

1.
Bajracharya
,
M.
,
Maimone
,
M. W.
, and
Helmick
,
D. J. C.
,
2008
, “
Autonomy for Mars Rovers: Past, Present, and Future
,”
Computer
,
41
(
12
), pp.
44
50
.
2.
Boyd
,
J. P.
,
2001
,
Chebyshev and Fourier Spectral Methods
,
Courier Corporation
,
Mineola, NY
.
3.
Barlas
,
F.
,
2004
, “
Design of a Mars Rover Suspension Mechanism
,”
Master's thesis
, Izmir Institute of Technology, Izmir, Turkey.http://openaccess.iyte.edu.tr/handle/11147/3449
4.
Hong
,
H. S.
,
Seo
,
T.
,
Kim
,
D.
,
Kim
,
S.
, and
J.
Kim
,
2013
, “
Optimal Design of Hand-Carrying Rocker-Bogie Mechanism for Stair Climbing
,”
J. Mech. Sci. Technol.
,
27
(
1
), pp.
125
132
.
5.
Chinchkar
,
D.
,
Gajghate
,
S.
,
Panchal
,
R.
,
Shetenawar
,
R.
, and
Mulik
,
P.
,
2017
, “
Design of Rocker Bogie Mechanism
,”
J. Eng. Technol.
,
4
(
1
), pp. 46–50.
6.
Sutoh
,
M.
,
Yusa
,
J.
,
Ito
,
T.
,
Nagatani
,
K.
, and
Yoshida
,
K.
,
2012
, “
Traveling Performance Evaluation of Planetary Rovers on Loose Soil
,”
J. Field Rob.
,
29
(
4
), pp.
648
662
.
7.
Lamon
,
P.
, and
Siegwart
,
R.
,
2005
, “
Wheel Torque Control in Rough Terrain-Modeling and Simulation
,”
IEEE
International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp.
867
872
.
8.
Yongming
,
W.
,
Xiaoliu
,
Y.
, and
Wencheng
,
T.
,
2009
, “
Analysis of Obstacle-Climbing Capability of Planetary Exploration Rover With Rocker-Bogie Structure
,”
International Conference on Information Technology and Computer Science
, Kiev, Ukraine, July 25–26, pp.
329
332
.
9.
Heverly
,
M.
,
Matthews
,
J.
,
Lin
,
J.
,
Fuller
,
D.
,
Maimone
,
M.
,
Biesiadecki
,
J.
, and
Leichty
,
J.
,
2013
, “
Traverse Performance Characterization for the Mars Science Laboratory Rover
,”
J. Field Rob.
,
30
(
6
), pp.
835
846
.
10.
Li
,
J.-Q.
,
Zou
,
M.
,
Jia
,
Y.
, and
Chen
,
B.
,
2008
, “
Lunar Soil Simulant for Vehicle-Terramechanics Research in Laboratory
,”
Rock Soil Mech.
,
29
(
6
), pp.
1557
1561
.
11.
Ding
,
L.
,
Gao
,
H.-B.
,
Deng
,
Z.-Q.
, and
Tao
,
J.-G.
,
2010
, “
Wheel Slip-Sinkage and Its Prediction Model of Lunar Rover
,”
J. Cent. South Univ. Technol.
,
17
(
1
), pp.
129
135
.
12.
Ding
,
L.
,
Gao
,
H.
,
Deng
,
Z.
,
Nagatani
,
K.
, and
Yoshida
,
K.
,
2011
, “
Experimental Study and Analysis on Driving Wheels' Performance for Planetary Exploration Rovers Moving in Deformable Soil
,”
J. Terramech.
,
48
(
1
), pp.
27
45
.
13.
Yoshida
,
K.
,
Mizuno
,
N.
,
Ishigami
,
G.
, and
Miwa
,
A.
, “
Terramechanics-Based Analysis for Slope Climbing Capability of a Lunar/Planetary Rover
,”
24th International Symposium on Space Technology and Science
, Miyazaki, Japan June 3–6.
14.
Yoshida
,
K.
,
Nagatani
,
K.
,
Ishigami
,
G.
,
Shimizu
,
S.
,
Sekimoto
,
K.
,
Miyahara
,
A.
, and
Yokoyama
,
T.
,
2004
, “
Soil Mechanics of Lunar Regolith Simulants for Probe Landing and Rover Locomotion
,” pp. 46–50.
15.
Ding
,
L.
,
Gao
,
H.
,
Deng
,
Z.
,
Song
,
P.
, and
Liu
,
R.
,
2008
, “
Design of Comprehensive High-Fidelity/High-Speed Virtual Simulation System for Lunar Rover
,”
IEEE
Conference on Robotics, Automation, and Mechatronics,
Chengdu, China, Sept. 21–24, pp.
1118
1123
.
16.
Ding
,
L.
,
Gao
,
H.
,
Deng
,
Z.
, and
Li
,
W.
,
2011
, “
Advances in Simulation of Planetary Wheeled Mobile Robots
,” Mobile Robots-Current Trends, Z. Gacovski, ed., InTech, Rijeka, Croatia, pp. 375–402.
17.
Jia
,
Z.
,
Smith
,
W.
, and
Peng
,
H.
,
2011
, “
Fast Computation of Wheel-Soil Interactions for Safe and Efficient Operation of Mobile Robots
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), San Francisco, CA, Sept. 25–30, pp.
3004
3010
.
18.
Trease
,
B.
,
Arvidson
,
R.
,
Lindemann
,
R.
,
Bennett
,
K.
,
Zhou
,
F.
,
Iagnemma
,
K.
,
Senatore
,
C.
, and
Van Dyke
,
L.
,
2011
, “
Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers
,”
ASME
Paper No. DETC2011-47896.
19.
Senatore
,
C.
,
Stein
,
N.
,
Zhou
,
F.
,
Bennett
,
K.
,
Arvidson
,
R.
,
Trease
,
B.
,
Lindemann
,
R.
,
Bellutta
,
P.
,
Heverly
,
M.
, and
Iagnemma
,
K.
, 2014, “
Modeling and Validation of Mobility Characteristics of the Mars Science Laboratory Curiosity Rover
,”
12th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS)
, Montreal, QC, Canada, June 17–19.
20.
Zhou
,
F.
,
Arvidson
,
R. E.
,
Bennett
,
K.
,
Trease
,
B.
,
Lindemann
,
R.
,
Bellutta
,
P.
,
Iagnemma
,
K.
, and
Senatore
,
C.
,
2014
, “
Simulations of Mars Rover Traverses
,”
J. Field Rob.
,
31
(
1
), pp.
141
160
.
21.
Frimpong
,
S.
,
2015
, “
Contact and Joint Forces Modeling and Simulation of Crawler-Formation Interactions
,”
J. Powder Metall. Min.
,
4
(
2
), p.
135
.
22.
Kumar
,
P.
, and
Pathak
,
P. M.
,
2011
, “
Dynamic Modeling, Simulation and Velocity Control of Rocker-Bogie Rover for Space Exploration
,”
Int. J. Intell. Mechatronics Rob.
,
1
(
2
), pp.
27
41
.
23.
Iagnemma
,
K.
, and
Dubowsky
,
S.
,
2000
, “
Mobile Robot Rough-Terrain Control (RTC) for Planetary Exploration
,” 26th ASME Biennial Mechanisms and Robotics Conference, American Society of Mechanical Engineers, New York.
24.
Iagnemma, K., Shibly, H., Rzepniewski, A., Dubowsky, S., and Territories, P., 2001, “Planning and Control Algorithms for Enhanced Rough-Terrain Rover Mobility,”
International Symposium on Artificial Intelligence, Robotics, and Automation in Space
, Quebec, QC, Canada, June 18–22, p. 2.
25.
Lamon
,
P.
,
Krebs
,
A.
,
Lauria
,
M.
,
Siegwart
,
R.
, and
Shooter
,
S.
,
2004
, “
Wheel Torque Control for a Rough Terrain Rover
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), New Orleans, LA, Apr. 26–May 1, pp. 4682–4687.
26.
Thueer
,
T.
,
Krebs
,
A.
,
Siegwart
,
R.
, and
Lamon
,
P.
,
2007
, “
Performance Comparison of Rough‐Terrain Robots—Simulation and Hardware
,”
J. Field Rob.
,
24
(
3
), pp.
251
271
.
27.
Thianwiboon
,
M.
, and
Sangveraphunsiri
,
V.
,
2006
, “
Traction Control for a Rocker-Bogie Robot With Wheel-Ground Contact Angle Estimation
,” Robot Soccer World Cup, Springer, Berlin, pp.
682
690
.
28.
Lhomme-Desages
,
D.
,
Grand
,
C.
, and
Guinot
,
J.
,
2007
, “
Trajectory Control of a Four-Wheel Skid-Steering Vehicle Over Soft Terrain Using a Physical Interaction Model
,”
IEEE
International Conference on Robotics and Automation
, Roma, Italy, Apr, 10–14 2007, pp.
1164
1169
.
29.
Rezaei
,
S.
,
Guivant
,
J.
, and
Nebot
,
E. M.
,
2003
, “
Car-Like Robot Path Following in Large Unstructured Environments
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Las Vegas, NV, Oct. 27–31, pp.
2468
2473
.
30.
Dissanayake
,
M. G.
,
Newman
,
P.
,
Clark
,
S.
,
Durrant-Whyte
,
H. F.
, and
Csorba
,
M.
,
2001
, “
A Solution to the Simultaneous Localization and Map Building (SLAM) Problem
,”
IEEE Trans. Rob. Autom.
,
17
(
3
), pp.
229
241
.
31.
Helmick
,
D. M.
,
Roumeliotis
,
S. I.
,
Cheng
,
Y.
,
Clouse
,
D. S.
,
Bajracharya
,
M.
, and
Matthies
,
L. H.
,
2006
, “
Slip-Compensated Path Following for Planetary Exploration Rovers
,”
Adv. Rob.
,
20
(
11
), pp.
1257
1280
.
32.
Ishigami
,
G.
,
Miwa
,
A.
,
Nagatani
,
K.
, and
Yoshida
,
K.
,
2007
, “
Terramechanics‐Based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil
,”
J. Field Rob.
,
24
(
3
), pp.
233
250
.
33.
Zheng
,
J.
,
Gao
,
H.
,
Yuan
,
B.
,
Liu
,
Z.
,
Yu
,
H.
,
Ding
,
L.
,
Deng
,
Z. J. M.
, and
Theory
,
M.
,
2018
, “
Design and Terramechanics Analysis of a Mars Rover Utilising Active Suspension
,”
Mech. Mach. Theory
,
128
, pp.
125
149
.
34.
Raja
,
R.
,
Dutta
,
A.
, and
Venkatesh
,
K. S.
,
2015
, “
New Potential Field Method for Rough Terrain Path Planning Using Genetic Algorithm for a 6-Wheel Rover
,”
Rob. Auton. Syst.
,
72
, pp.
295
306
.
35.
Li
,
L.
,
Lian
,
J.
,
Huang
,
H.
,
Wang
,
H.
,
Zong
,
Y.
, and
Zhang
,
R.
,
2015
, “
Traversability Based Obstacle Avoidance Path-Planning and Path-Following Control for Lunar Rover
,”
J. Intell. Fuzzy Syst.
,
28
(
2
), pp.
547
559
.
36.
Ding
,
L.
,
Deng
,
Z.
,
Gao
,
H.
,
Tao
,
J.
,
Iagnemma
,
K. D.
, and
Liu
,
G.
,
2015
, “
Interaction Mechanics Model for Rigid Driving Wheels of Planetary Rovers Moving on Sandy Terrain With Consideration of Multiple Physical Effects
,”
J. Field Rob.
,
32
(
6
), pp.
827
859
.
37.
Toupet
,
O.
,
Biesiadecki
,
J.
,
Rankin
,
A.
,
Steffy
,
A.
,
Meirion-Griffith
,
G.
,
Levine
,
D.
,
Schadegg
,
M.
, and
Maimone
,
M.
,
2018
, “
Traction Control Design and Integration Onboard the Mars Science Laboratory Curiosity Rover
,”
IEEE
Aerospace Conference
, Big Sky, MT, Mar. 3–10, pp.
1
20
.
38.
Caracciolo
,
L.
,
De Luca
,
A.
, and
Iannitti
,
S.
,
1999
, “
Trajectory Tracking Control of a Four-Wheel Differentially Driven Mobile Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Detroit, MI, May 10–15, pp.
2632
2638
.
39.
Ono
,
M.
,
Fuchs
,
T. J.
,
Steffy
,
A.
,
Maimone
,
M.
, and
Yen
,
J.
,
2015
, “
Risk-Aware Planetary Rover Operation: Autonomous Terrain Classification and Path Planning
,”
IEEE
Aerospace Conference
, Big Sky, MT, Mar. 7–14, pp.
1
10
.
40.
Arvidson
,
R. E.
,
Iagnemma
,
K. D.
,
Maimone
,
M.
,
Fraeman
,
A. A.
,
Zhou
,
F.
,
Heverly
,
M. C.
,
Bellutta
,
P.
,
Rubin
,
D.
,
Stein
,
N. T.
,
Grotzinger
,
J. P.
, and
Vasavada
,
A. R.
, 2017, “Mars Science Laboratory Curiosity Rover Megaripple Crossings Up To Sol 710 in Gale Crater,”
J. Field Rob.
, 34(3), pp. 495–518.
You do not currently have access to this content.