A transient milling stability analysis method is presented based on linear dynamics. Milling stability is usually analyzed based on asymptotic stability methods, such as the Floquet theory and the Nyquist stability criterion. These theories define stability that can return to equilibrium in an infinite time horizon under any initial condition. However, as a matter of fact, most dynamic processes in milling operations occur on a finite time scale. The transient vibration can be caused by some disturbance in practical milling process. Heavy transient vibrations were observed in existing works, though the machining parameters were selected in the stability zone determined by the asymptotic stability method. The strong transient vibrations will severely decrease the machining surface quality, especially for small workpieces in which the majority of machining process is executed in a short period of time. The analysis method of the transient milling stability is seldom studied, and only some experiments and conjectures can be found. Here the transient milling stability is defined as transient energy growth in a finite time horizon, and the prediction method of transient stability is proposed based on linear dynamics. The eigenvalues and non-normal eigenvectors of the Floquet transition matrix are all used to predict the transient milling stability, while only eigenvalues are employed in the traditional asymptotic stability analysis method. The transient stability is finally analyzed by taking the maximum vibration energy growth and the maximum duration time of transient energy growth in a finite time for optimal selection of processing parameters.

References

1.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann. Manuf. Technol.
,
53
(
2
), pp.
619
642
.
2.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
357
362
.
3.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.
4.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
22
30
.
5.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
31
36
.
6.
Minis
,
I.
, and
Yanushevsky
,
R.
,
1993
, “
A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling
,”
ASME J. Eng. Ind.
,
115
(
1
), pp.
1
8
.
7.
Insperger
,
T.
, and
Stpn
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.
8.
Insperger
,
T.
, and
Stpn
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.
9.
Insperger
,
T.
,
Stpn
,
G.
, and
Turi
,
J.
,
2008
, “
On the Higher-Order Semi-Discretizations for Periodic Delayed Systems
,”
J. Sound Vib.
,
313
(
1–2
), pp.
334
341
.
10.
Insperger
,
T.
, and
Stpn
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications
, Vol.
178
,
Springer Science & Business Media
,
New York
.
11.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.
12.
Insperger
,
T.
,
2010
, “
Full-Discretization and Semi-Discretization for Milling Stability Prediction: Some Comments
,”
Int. J. Mach. Tools Manuf.
,
50
(
7
), pp.
658
662
.
13.
Asl
,
F. M.
, and
Ulsoy
,
A. G.
,
2003
, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
2
), pp.
215
223
.
14.
Butcher
,
E. A.
,
Bobrenkov
,
O. A.
,
Bueler
,
E.
, and
Nindujarla
,
P.
,
2009
, “
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031003
.
15.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
,
2003
, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
220
225
.
16.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
Numerical Integration Method for Prediction of Milling Stability
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031005
.
17.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
On a Numerical Method for Simultaneous Prediction of Stability and Surface Location Error in Low Radial Immersion Milling
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
2
), p.
024503
.
18.
Farkas
,
M.
,
1994
,
Periodic Motions
,
Springer
,
New York
.
19.
Hall
,
S. R.
, and
Wereley
,
N. M.
, 1990, “
Generalized Nyquist Stability Criterion for Linear Time Periodic Systems
,”
American Control Conference
(
ACC
), San Diego, CA, May 23–25, pp.
1518
1525
.http://ieeexplore.ieee.org/document/4790991/
20.
Seguy
,
S.
,
Insperger
,
T.
,
Arnaud
,
L.
,
Dessein
,
G.
, and
Peign
,
G.
,
2010
, “
On the Stability of High-Speed Milling With Spindle Speed Variation
,”
Int. J. Adv. Manuf. Technol.
,
48
(
9
), pp.
883
895
.
21.
Sexton
,
J. S.
, and
Stone
,
B. J.
,
1980
, “
An Investigation of the Transient Effects During Variable Speed Cutting
,”
J. Mech. Eng. Sci.
,
22
(
3
), pp.
107
118
.
22.
Sexton
,
J.
, and
Stone
,
B.
,
1978
, “
The Stability of Machining With Continuously Varying Spindle Speed
,”
Ann. CIRP
,
27
(
1
), pp.
321
326
.
23.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Dilley
,
D. N.
,
2005
, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
446
453
.
24.
Gradiek
,
J.
,
Kalveram
,
M.
,
Insperger
,
T.
,
Weinert
,
K.
,
Stépán
,
G.
,
Govekar
,
E.
, and
Grabec
,
I.
,
2005
, “
On Stability Prediction for Milling
,”
Int. J. Mach. Tools Manuf.
,
45
(
78
), pp.
769
781
.
25.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2012
,
Stability and Transition in Shear Flows
, Vol.
142
,
Springer Science & Business Media
,
New York
.
26.
Schmid
,
P. J.
, and
Brandt
,
L.
,
2014
, “
Analysis of Fluid Systems: Stability, Receptivity, Sensitivitylecture Notes From the Flow-Nordita Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013
,”
ASME Appl. Mech. Rev.
,
66
(
2
), p.
024803
.
27.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “Modal Analysis of Fluid Flows: An Overview,” preprint
arXiv:1702.01453
.https://arxiv.org/abs/1702.01453
You do not currently have access to this content.