In this paper, we introduce two robust adaptive controllers for the human shank motion tracking problem that is inherent in neuromuscular electrical stimulation (NMES) systems. The control laws adaptively compensate for the unknown parameters that appear nonlinearly in the musculoskeletal dynamics while providing robustness to additive disturbance torques. The adaptive schemes exploit the Lipschitzian and/or the concave/convex parameterizations of the model functions. The resulting control laws are continuous and guarantee practical tracking for the shank angular position. The performance of the two robust adaptive controllers is demonstrated via simulations.

References

1.
Sharma
,
N.
,
Gregory
,
C.
, and
Dixon
,
W.
,
2011
, “
Predictor-Based Compensation for Electromechanical Delay During Neuromuscular Electrical Stimulation
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
19
(
6
), pp.
601
611
.
2.
Ferrarin
,
M.
, and
Pedotti
,
A.
,
2000
, “
The Relationship Between Electrical Stimulus and Joint Torque: A Dynamic Model
,”
IEEE Trans. Rehab. Eng.
,
8
(
3
), pp.
342
352
.
3.
Hausdorff
,
J.
, and
Durfee
,
W.
,
1991
, “
Open-Loop Position Control of the Knee Joint Using Electrical Stimulation of the Quadriceps and Hamstrings
,”
Med. Biol. Eng. Comput.
,
29
(
3
), pp.
269
280
.
4.
Jezernik
,
S.
,
Wassink
,
R.
, and
Keller
,
T.
,
2004
, “
Sliding Mode Closed Loop Control of FES: Controlling the Shank Movement
,”
IEEE Trans. Biomed. Eng.
,
51
(
2
), pp.
263
272
.
5.
Schauer
,
T.
,
Negard
,
N.
,
Previdi
,
F.
,
Hunt
,
K.
,
Fraser
,
M.
,
Ferchland
,
E.
, and
Raisch
,
J.
,
2005
, “
Online Identification and Nonlinear Control of the Electrically Stimulated Quadriceps Muscle
,”
Control Eng. Pract.
,
13
(
9
), pp.
1207
1219
.
6.
Crago
,
P.
,
Lan
,
N.
,
Veltink
,
P.
,
Abbas
,
J.
, and
Kantor
,
C.
,
1996
, “
New Control Strategies for Neuroprosthetic Systems
,”
J. Rehab. Res. Dev.
,
33
(
2
), pp.
158
172
.
7.
Hill
,
A.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London B
,
126
(
843
), pp.
136
195
.
8.
Dorgan
,
S.
, and
O'Malley
,
M.
,
1997
, “
A Nonlinear Mathematical Model of Electrically Stimulated Skeletal Muscle
,”
IEEE Trans. Rehab. Eng.
,
5
(
2
), pp.
179
194
.
9.
Edrich
,
T.
,
Riener
,
R.
, and
Quintern
,
J.
,
2000
, “
Analysis of Passive Elastic Joint Moments in Paraplegics
,”
IEEE Trans. Biomed. Eng.
,
47
(
8
), pp.
1058
1065
.
10.
Franken
,
H.
,
Veltink
,
P.
, and
Henk
,
R.
,
1993
, “
Identification of Passive Knee Joint and Shank Dynamics in Paraplegics Using Quadriceps Stimulation
,”
IEEE Trans. Rehab. Eng.
,
1
(
3
), pp.
154
164
.
11.
Hatze
,
H.
,
1977
, “
A Myocybernetic Control Model of Skeletal Muscle
,”
Biol. Cybern.
,
25
(
2
), pp.
103
119
.
12.
Kearney
,
R.
, and
Hunter
,
I.
,
1990
, “
System Identification of Human Joint Dynamics
,”
Critical Rev. Biomed. Eng.
,
18
(
1
), pp.
57
88
.
13.
Levy
,
M.
,
Mizrahi
,
J.
, and
Susak
,
Z.
,
1990
, “
Recruitment, Force and Fatigue Characteristics of Quadriceps Muscles of Paraplegics, Isometrically Activated by Surface FES
,”
J. Biomed. Eng.
,
12
(
2
), pp.
150
156
.
14.
Riener
,
R.
,
Quintern
,
J.
, and
Schmidt
,
G.
,
1996
, “
Biomechanical Model of the Human Knee Evaluated by Neuromuscular Stimulation
,”
J. Biomech.
,
29
(
9
), pp.
1157
1167
.
15.
Schutte
,
L.
,
Rodgers
,
M.
,
Zajac
,
F.
, and
Glaser
,
R.
,
1993
, “
Improving the Efficacy of Electrical Stimulation-Induced Leg Cycle Ergometry: An Analysis Based on a Dynamic Musculoskeletal Model
,”
IEEE Trans. Rehab. Eng.
,
1
(
2
), pp.
109
125
.
16.
Ferrarin
,
M.
,
Palazzo
,
F.
,
Riener
,
R.
, and
Quintern
,
J.
,
2001
, “
Model-Based Control of FES-Induced Single Joint Movements
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
9
(
3
), pp.
245
257
.
17.
Koo
,
B.
, and
Leonessa
,
A.
,
2011
, “An Adaptive Block Backstepping Control Design for Functional Electrical Stimulation of Agonist-Antagonist Muscles,”
ASME
Paper No. DSCC2011-6143.
18.
Yang
,
R.
, and
de Queiroz
,
M.
,
2016
, “
Adaptive Control of the Nonlinearly Parameterized Limb Dynamics With Application to Neuromuscular Electrical Stimulation
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
4871
4876
.
19.
Kobravi
,
H.-R.
, and
Erfanian
,
A.
,
2009
, “
Decentralized Adaptive Robust Control Based on Sliding Mode and Nonlinear Compensator for Control of Ankle Movement Using Functional Electrical Stimulation of Agonist-Antagonist Muscles
,”
J. Neural Eng.
,
6
(
4
), pp.
2818
2827
.
20.
Cheng
,
T.-H.
,
Wang
,
Q.
,
Kamalapurkar
,
R.
,
Dinh
,
H. T.
,
Bellman
,
M.
, and
Dixon
,
W. E.
,
2016
, “
Identification-Based Closed-Loop NMES Limb Tracking With Amplitude-Modulated Control Input
,”
IEEE Trans. Cybern.
,
46
(
7
), pp.
1679
1690
.
21.
Giuffrida
,
J.
, and
Crago
,
P.
,
2005
, “
Functional Restoration of Elbow Extension After Spinal-Cord Injury Using a Neural Network-Based Synergistic FES Controller
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
13
(
2
), pp.
147
152
.
22.
Riess
,
J.
, and
Abbas
,
J.
,
2000
, “
Adaptive Neural Network Control of Cyclic Movements Using Functional Neuromuscular Stimulation
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
8
(
1
), pp.
42
52
.
23.
Sharma
,
N.
,
Gregory
,
C.
,
Johnson
,
M.
, and
Dixon
,
W.
,
2012
, “
Closed-Loop Neural Network-Based NMES Control for Human Limb Tracking
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
712
725
.
24.
Wang
,
Q.
,
Sharma
,
N.
,
Johnson
,
M.
,
Gregory
,
C. M.
, and
Dixon
,
W.
,
2013
, “
Adaptive Inverse Optimal Neuromuscular Electrical Stimulation
,”
IEEE Trans. Cybern.
,
43
(
6
), pp.
1710
1718
.
25.
Sharma
,
N.
,
Stegath
,
K.
,
Gregory
,
C.
, and
Dixon
,
W.
,
2009
, “
Nonlinear Neuromuscular Electrical Stimulation Tracking Control of a Human Limb
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
17
(
6
), pp.
576
584
.
26.
Karafyllis
,
I.
,
Malisoff
,
M.
,
de Queiroz
,
M.
,
Krstic
,
M.
, and
Yang
,
R.
,
2015
, “
Predictor-Based Tracking for Neuromuscular Electrical Stimulation
,”
Int. J. Rob. Nonlinear Control
,
25
(
14
), pp.
2391
2419
.
27.
Merad
,
M.
,
Downey
,
R. J.
,
Obuz
,
S.
, and
Dixon
,
W. E.
,
2016
, “
Isometric Torque Control for Neuromuscular Electrical Stimulation With Time-Varying Input Delay
,”
IEEE Trans. Control Syst. Technol.
,
24
(
3
), pp.
971
978
.
28.
Downey
,
R. J.
,
Cheng
,
T.-H.
,
Bellman
,
M.
, and
Dixon
,
W. E.
,
2015
, “
Closed-Loop Asynchronous Electrical Stimulation Prolongs Functional Movements in the Lower Body
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
23
(
6
), pp.
1117
1127
.
29.
Ortega
,
R.
,
1996
, “
Some Remarks on Adaptive Neuro-Fuzzy Systems
,”
Int. J. Adapt. Control Signal Process.
,
10
(
1
), pp.
79
83
.
30.
Annaswamy
,
A.
,
Skantze
,
F.
, and
Loh
,
A.
,
1998
, “
Adaptive Control of Continuous Time Systems With Convex/Concave Parameterization
,”
Automatica
,
34
(
1
), pp.
33
49
.
31.
Kojic
,
A.
,
Annaswamy
,
A. M.
,
Loh
,
A.-P.
, and
Lozano
,
R.
,
1999
, “
Adaptive Control of a Class of Nonlinear Systems With Convex/Concave Parameterization
,”
Syst. Control Lett.
,
37
(
5
), pp.
267
274
.
32.
Loh
,
A.
,
Annaswamy
,
A.
, and
Skantze
,
F.
,
1999
, “
Adaptation in the Presence of a General Nonlinear Parameterization: An Error Model Approach
,”
IEEE Trans. Autom. Control
,
44
(
9
), pp.
1634
1652
.
33.
Netto
,
M.
,
Annaswamy
,
A. M.
,
Ortega
,
R.
, and
Moya
,
P.
,
2000
, “
Adaptive Control of a Class of Nonlinearly Parameterized Systems Using Convexification
,”
Int. J. Control
,
73
(
14
), pp.
1312
1321
.
34.
Fradkov
,
A.
,
Ortega
,
R.
, and
Bastin
,
G.
,
2001
, “
Semi-Adaptive Control of Convexly Parametrized Systems With Application to Temperature Regulation of Chemical Reactors
,”
Int. J. Adapt. Control Signal Process.
,
15
(
4
), pp.
415
426
.
35.
Netto
,
M.
, and
Annaswamy
,
A. M.
,
2012
, “
Adaptive Control of a Class of Multilinearly Parameterized Systems by Using Noncertainty Equivalence Control
,”
IEEE Conference on Decision and Control
(
CDC
), Maui, HI, Dec. 10–13, pp.
4829
4834
.
36.
Hung
,
N. V. Q.
,
Tuan
,
H. D.
,
Apkarian
,
P.
, and
Narikiyo
,
T.
,
2002
, “
General Adaptive Controls for Nonlinearly Parameterized Systems Under Generalized Matching Condition
,”
15th Triennial World Congress
(
IFAC
), Barcelona, Spain, July 21–26, pp.
840
846
.
37.
de Queiroz
,
M. S.
,
Dawson
,
D. M.
,
Nagarkatti
,
S.
, and
Zhang
,
F.
,
2000
,
Lyapunov-Based Control of Mechanical Systems
,
Birkhäuser
,
Cambridge, MA
.
38.
Yang
,
R.
, and
de Queiroz
,
M.
,
2016
, “
Adaptive Control With Concave/Convex Parameterization for an Electrically Stimulated Human Limb
,”
IFAC Conference on Cyber-Physical and Human-Systems
, Florianopolis, Brazil, Dec. 7–9, pp.
194
199
.
39.
Yokoi
,
K.
,
Hung
,
N.
,
Tuan
,
H.
, and
Hosoe
,
S.
,
2007
, “
Adaptive Control Design for Nonlinearly Parameterized Systems With a Triangular Structure
,”
Asian J. Control
,
9
(
2
), pp.
121
132
.
40.
Polycarpou
,
M.
, and
Ioannou
,
P.
, 1996, “
A Robust Adaptive Nonlinear Control Design
,”
Automatica
,
32
(
3
), pp.
423
427
.
41.
Davy
,
D.
, and
Audu
,
M.
,
1987
, “
A Dynamic Optimization Technique for Predicting Muscle Force in the Swing Phase of Gait
,”
J. Biomech.
,
20
(
2
), pp.
187
201
.
42.
Mansour
,
J.
, and
Audu
,
M.
,
1986
, “
The Passive Elastic Moment at the Knee and Its Influence on Human Gait
,”
J. Biomech.
,
19
(
5
), pp.
369
373
.
43.
Qiu
,
T.
,
Alibeji
,
N.
, and
Sharma
,
N.
,
2016
, “
Robust Compensation of Electromechanical Delay During Neuromuscular Electrical Stimulation of Antagonistic Muscles
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
4871
4876
.
44.
Narendra
,
K. S.
, and
Annaswamy
,
A. M.
,
2005
,
Stable Adaptive Systems
,
Dover
,
Mineola, NY
.
45.
Qian
,
C.
, and
Lin
,
W.
,
2002
, “
Practical Output Tracking of Nonlinear Systems With Uncontrollable Unstable Linearization
,”
IEEE Trans. Autom. Control
,
47
(
1
), pp.
21
36
.
46.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
Hoboken, NJ
.
47.
Gao
,
F.
,
de Queiroz
,
M. S.
, and
Dawson
,
D. M.
,
2007
, “
A New Tuning Function-Based Robust Adaptive Controller for Parametric Strict-Feedback Systems
,”
IEEE Conference Decision and Control
(
CDC
), New Orleans, LA, Dec. 12–14, pp.
3543
3548
.
48.
Qu
,
Z.
, and
Xu
,
J. X.
,
2002
, “
Model-Based Learning Controls and Their Comparisons Using Lyapunov Direct Method
,”
Asian J. Control
,
4
(
1
), pp.
99
110
.
49.
Xian
,
B.
,
Dawson
,
D.
,
de Queiroz
,
M.
, and
Chen
,
J.
,
2004
, “
A Continuous Asymptotic Tracking Control Strategy for Uncertain Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
49
(
7
), pp.
1206
1211
.
50.
Krstić
,
M.
,
1996
, “
Invariant Manifolds and Asymptotic Properties of Adaptive Nonlinear Stabilizers
,”
IEEE Trans. Autom. Control
,
41
(
6
), pp.
817
829
.
51.
Anderson
,
D.
,
Madigan
,
M.
, and
Nussbaum
,
M.
,
2007
, “
Maximum Voluntary Joint Torque as a Function of Joint Angle and Angular Velocity: Model Development and Application to the Lower Limb
,”
J. Biomech.
,
40
(
14
), pp.
3105
3113
.
You do not currently have access to this content.