In this paper, online policy iteration reinforcement learning (RL) algorithm is proposed for motion control of four wheeled omni-directional robots. The algorithm solves the linear quadratic tracking (LQT) problem in an online manner using real-time measurement data of the robot. This property enables the tracking controller to compensate the alterations of dynamics of the robot's model and environment. The online policy iteration based tracking method is employed as low level controller. On the other side, a proportional derivative (PD) scheme is performed as supervisory planning system (high level controller). In this study, the followed paths of online and offline policy iteration algorithms are compared in a rectangular trajectory in the presence of slippage drawback and motor heat. Simulation and implementation results of the methods demonstrate the effectiveness of the online algorithm compared to offline one in reducing the command trajectory tracking error and robot's path deviations. Besides, the proposed online controller shows a considerable ability in learning appropriate control policy on different types of surfaces. The novelty of this paper is proposition of a simple-structure learning based adaptive optimal scheme that tracks the desired path, optimizes the energy consumption, and solves the uncertainty problem in omni-directional wheeled robots.

References

1.
Kim
,
H.
, and
Kim
,
B. K.
,
2014
, “
Online Minimum-Energy Trajectory Planning and Control on a Straight-Line Path for Three-Wheeled Omnidirectional Mobile Robots
,”
IEEE Trans. Ind. Electron.
,
61
(
9
), pp.
4771
4779
.
2.
Jia
,
Z. J.
,
Song
,
Y. D.
, and
Cai
,
W. C.
,
2013
, “
Bio-Inspired Approach for Smooth Motion Control of Wheeled Mobile Robots
,”
Cognit. Comput.
,
5
(
2
), pp.
252
263
.
3.
Kanjanawanishkul
,
K.
,
2015
, “
Omnidirectional Wheeled Mobile Robots: Wheel Types and Practical Applications
,”
Int. J. Adv. Mechatronic Syst.
,
6
(
6
), pp.
289
302
.
4.
Burl
,
J. B.
,
1998
, “
Linear Optimal Control: H (2) and H (Infinity) Methods
,”
Addison-Wesley Longman Publishing
, Boston, MA.
5.
Sherback
,
M.
,
Purwin
,
O.
, and
D'Andrea
,
R.
,
2006
, “
Real-Time Motion Planning and Control in the 2005 Cornell Robocup System
,”
Rob. Motion Control
,
335
, pp.
245
263
.
6.
Bruce
,
J. R.
,
2006
, “
Real-Time Motion Planning and Safe Navigation in Dynamic Multi-Robot Environments
,”
Ph.D. dissertation
, Carnegie Mellon University, Washington, DC.http://reports-archive.adm.cs.cmu.edu/anon/2006/CMU-CS-06-181.pdf
7.
Purwin
,
O.
, and
D'Andrea
,
R.
,
2006
, “
Trajectory Generation and Control for Four Wheeled Omnidirectional Vehicles
,”
Rob. Auton. Syst.
,
54
(
1
), pp.
13
22
.
8.
Juang
,
C. F.
,
Lai
,
M. G.
, and
Zeng
,
W. T.
,
2015
, “
Evolutionary Fuzzy Control and Navigation for Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments
,”
IEEE Trans. Cybern.
,
45
(
9
), pp.
1731
1743.
9.
Chwa
,
D.
,
2012
, “
Fuzzy Adaptive Tracking Control of Wheeled Mobile Robots With State-Dependent Kinematic and Dynamic Disturbances
,”
IEEE Trans. Fuzzy Syst.
,
20
(
3
), pp.
587
593
.
10.
Yang
,
S. X.
,
Zhu
,
A.
,
Yuan
,
G.
, and
Meng
,
M. Q. H.
,
2012
, “
A Bioinspired Neurodynamics-Based Approach to Tracking Control of Mobile Robots
,”
IEEE Trans. Ind. Electron.
,
59
(
8
), pp.
3211
3220.
11.
Kayacan
,
E.
,
Kayacan
,
E.
,
Ramon
,
H.
, and
Saeys
,
W.
,
2013
, “
Adaptive Neuro-Fuzzy Control of a Spherical Rolling Robot Using Sliding-Mode-Control-Theory-Based Online Learning Algorithm
,”
IEEE Trans. Cybern.
,
43
(
1
), pp.
170
179
.
12.
Gao
,
H.
,
Song
,
X.
,
Ding
,
L.
,
Xia
,
K.
,
Li
,
N.
, and
Deng
,
Z.
,
2014
, “
Adaptive Motion Control of Wheeled Mobile Robot With Unknown Slippage
,”
Int. J. Control
,
87
(
8
), pp.
1513
1522
.
13.
Hoang
,
N. B.
, and
Kang
,
H. J.
,
2016
, “
Neural Network-Based Adaptive Tracking Control of Mobile Robots in the Presence of Wheel Slip and External Disturbance Force
,”
Neurocomputing
,
188
, pp.
12
22
.
14.
Boukens
,
M.
, and
Boukabou
,
A.
,
2017
, “
Design of an Intelligent Optimal Neural Network-Based Tracking Controller for Nonholonomic Mobile Robot Systems
,”
Neurocomputing
,
226
, pp.
46
57
.
15.
Su
,
K. H.
,
Chen
,
Y. Y.
, and
Su
,
S. F.
,
2010
, “
Design of Neural-Fuzzy-Based Controller for Two Autonomously Driven Wheeled Robot
,”
Neurocomputing
,
73
(
13–15
), pp.
2478
2488
.
16.
Li
,
S.
,
Wang
,
H.
, and
Rafique
,
M. U.
,
2017
, “
A Novel Recurrent Neural Network for Manipulator Control With Improved Noise Tolerance
,”
IEEE Trans. Neural Networks Learn. Syst.
,
36
(4), pp. 424–440.
17.
Li
,
S.
,
Zhang
,
Y.
, and
Jin
,
L.
,
2016
, “
Kinematic Control of Redundant Manipulators Using Neural Networks
,”
IEEE Transactions Neural Networks Learning Syst.
,
28
(10), pp. 2243–2254.
18.
Zhang
,
Y.
, and
Li
,
S.
,
2017
, “
Predictive Suboptimal Consensus of Multiagent Systems With Nonlinear Dynamics
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
47
(7), pp. 1701–1711.
19.
Li
,
S.
,
Zhou
,
M.
,
Luo
,
X.
, and
You
,
Z. H.
,
2017
, “
Distributed Winner-Take-All in Dynamic Networks
,”
IEEE Trans. Autom. Control
,
62
(
2
), pp.
577
589
.
20.
Jin
,
L.
,
Li
,
S.
,
La
,
H. M.
, and
Luo
,
X.
,
2017
, “
Manipulability Optimization of Redundant Manipulators Using Dynamic Neural Networks
,”
IEEE Trans. Ind. Electron.
,
64
(6), pp. 4710–4720.
21.
Sheikhlar
,
A.
,
Fakharian
,
A.
,
Beik-Mohammadi
,
H.
, and
Adhami-Mirhosseini
,
A.
,
2016
, “
Design and Implementation of Self-Adaptive PD Controller Based on Fuzzy Logic Algorithm for Omni-Directional Fast Robots in Presence of Model Uncertainties
,”
Int. J. Uncertainty, Fuzziness Knowl.-Based Syst.
,
24
(
5
), pp.
761
780
.
22.
Sheikhlar
,
A.
,
Zarghami
,
M.
,
Fakharian
,
A.
, and
Menhaj
,
M. B.
,
2013
, “
Delay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots
,”
Amirkabir Int. J. Electr. Electron. Eng.
,
45
(
2
), pp.
57
64
.
23.
Sharbafi
,
M. A.
,
Lucas
,
C.
, and
Daneshvar
,
R.
,
2010
, “
Motion Control of Omni-Directional Three-Wheel Robots by Brain-Emotional-Learning-Based Intelligent Controller
,”
IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.)
,
40
(
6
), pp.
630
638
.
24.
Kiumarsi-Khomartash
,
B.
,
Lewis
,
F. L.
,
Naghibi-Sistani
,
M. B.
, and
Karimpour
,
A.
,
2013
, “
Optimal Tracking Control for Linear Discrete-Time Systems Using Reinforcement Learning
,”
IEEE 52nd Annual Conference on Decision and Control
(
CDC
), Florence, Italy, Dec. 10–13, pp.
3845
3850
.
25.
Hashemi
,
E.
,
Jadidi
,
M. G.
, and
Jadidi
,
N. G.
,
2011
, “
Model-Based PI–Fuzzy Control of Four-Wheeled Omni-Directional Mobile Robots
,”
Rob. Auton. Syst.
,
59
(
11
), pp.
930
942
.
26.
Ben-Israel
,
A.
, and
Greville
,
T. N.
,
2003
, “
Generalized Inverses: Theory and Applications
, Vol.
15
,
Springer Science & Business Media
, New York.
27.
Montone, D., 2017, “Temperature Effects on Motor Performance,” AMETEK Advanced Motion Solutions, Berwyn, PA, accessed Feb. 21, 2018, http://www.haydonkerkpittman.com/-/media/ametekhaydonkerk/downloads/white-papers/temperature_effects_on_dc_motor_performance_1.pdf?la=en
28.
Kiumarsi
,
B.
,
Lewis
,
F. L.
,
Modares
,
H.
,
Karimpour
,
A.
, and
Naghibi-Sistani
,
M. B.
,
2014
, “
Reinforcement Q-Learning for Optimal Tracking Control of Linear Discrete-Time Systems With Unknown Dynamics
,”
Automatica
,
50
(
4
), pp.
1167
1175
.
29.
Hewer
,
G.
,
1971
, “
An Iterative Technique for the Computation of the Steady-State Gains for the Discrete Optimal Regulator
,”
IEEE Trans. Autom. Control
,
16
(
4
), pp.
382
384
.
30.
Liu
,
Y.
,
Zhu
,
J. J.
,
Williams
,
R. L.
, and
Wu
,
J.
,
2008
, “
Omni-Directional Mobile Robot Controller Based on Trajectory Linearization
,”
Rob. Auton. Syst.
,
56
(
5
), pp.
461
479
.
31.
Zhao
,
W.
,
Kim
,
B. H.
,
Larson
,
A. C.
, and
Voyles
,
R. M.
,
2005
, “
FPGA Implementation of Closed-Loop Control System for Small-Scale Robot
,”
12th International Conference on Advanced Robotics
(
ICAR'05
), Seattle, WA, July 18–20, pp.
70
77
.
32.
Chaiso
,
K.
, and
Sukvichai
,
K.
,
2011
, “Skuba 2011 Extended Team Description,” RoboCup Wiki as extended team description of SKUBA team, Istanbul, Turkey, accessed Feb. 21, 2018, http://wiki.robocup.org/images/4/4c/Small_Size_League_-_RoboCup_2011_-_ETDP_Skuba.pdf
You do not currently have access to this content.