Control of wind-induced flutter of a bridge deck is studied using static output feedback. Servomotor-actuated winglets provide the control forces. Deck and winglets are modeled as flat plates and their aerodynamic interaction is neglected. Self-excited wind forces acting on deck and winglets are modeled using the Scanlan–Tomko model, with flat plate flutter derivatives (FDs) obtained from Theodorsen functions. Rogers rational function approximation (RFA) is used for time domain representation of wind forces in order to simplify the stability and control analyses. Control input to servomotors is based on direct feedback of vertical and torsional displacements of deck. Feedback gains that are constant, or varying with wind speed, are considered. Winglet rotations being restricted, flutter and divergence behavior is studied using system eigenvalues as well as responses. Results show that variable gain output feedback (VGOF) control using servomotor driven winglets is very effective. It provides the maximum increase in critical speed and maximum attenuation of response, followed by control with gain scheduling, with the former requiring less input power. Control with constant gain is least effective. Control of deck rotation generally appears to improve with wind speed.

References

1.
Scanlan
,
R. H.
, and
Tomko
,
J. J.
,
1971
, “
Airfoil and Bridge Deck Flutter Derivatives
,”
ASCE J. Eng. Mech.
,
97
(
6
), pp.
1717
1737
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0017902
2.
Simiu
,
E.
, and
Scanlan
,
R. H.
,
1996
,
Wind Effects on Structures
,
Wiley
,
New York
.
3.
Roger
,
K. L.
,
1977
, “
Airplane Math Modeling Methods for Active Control Design
,” Structural Aspects of Active Controls, Paper No. AGARD-CP-228.
4.
Karpel
,
M.
,
1981
, “
Design for Active and Passive Flutter Suppression and Gust Alleviation
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA CR-3482
.https://ntrs.nasa.gov/search.jsp?R=19820005274
5.
Eversman
,
W.
, and
Tewari
,
A.
,
1991
, “
Consistent Rational-Function Approximation for Unsteady Aerodynamics
,”
J. Aircr.
,
28
(
9
), pp.
545
552
.
6.
Pourzeynali
,
S.
, and
Datta
,
T. K.
,
2002
, “
Control of Flutter of Suspension Bridge Deck Using TMD
,”
J. Wind Struct.
,
5
(
5
), pp.
407
422
.
7.
Pourzeynali
,
S.
, and
Datta
,
T. K.
,
2005
, “
Semi Active Fuzzy Logic Control of Suspension Bridge Flutter
,”
ASCE J. Struct. Eng.
,
131
(
6
), pp.
900
912
.
8.
Kwon
,
S. D.
, and
Park
,
K. S.
,
2004
, “
Suppressing of Bridge Flutter Using Tuned Mass Dampers Based on Robust Performance Design
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
11
), pp.
919
934
.
9.
Chen
,
X.
, and
Kareem
,
A.
,
2003
, “
Efficacy of Tuned Mass Dampers for Bridge Flutter Control
,”
ASCE J. Struct. Eng.
,
129
(
10
), pp.
1291
1300
.
10.
Achkire
,
Y.
,
Bossens
,
F.
, and
Preumont
,
A.
,
1998
, “
Active Damping and Flutter Control of Cable-Stayed Bridges
,”
J. Wind Eng. Ind. Aerodyn.
,
74–76
, pp.
913
921
.
11.
Körlin
,
R.
, and
Starossek
,
U.
,
2004
, “
Active Mass Dampers for Flutter Control of Bridges
,”
Eighth International Conference on Flow-Induced Vibrations
, Paris, France, July 6–9, pp. 1–6.https://www.tuhh.de/t3resources/sdb/pdf/starossek/Veroeffentlichungen/Dateien/Active%20Mass%20Dampers%20for%20Flutter%20Control%20of%20Bridges%20(as%20published).pdf
12.
Rohman
,
M. A.
,
John
,
M. J.
, and
Hassan
,
M. F.
,
2010
, “
Compensation of Time Delay Effect in Semi-Active Controlled Suspension Bridges
,”
J. Vib. Control
,
16
(
10
), pp.
1527
1558
.
13.
Kobayashi
,
H.
, and
Nagaoka
,
H.
,
1992
, “
Active Control of Flutter of a Suspension Bridge
,”
J. Wind Eng. Ind. Aerodyn.
,
41
(
1–3
), pp.
143
151
.
14.
Huynh
,
T.
, and
Thoft-Christensen
,
P.
,
2001
, “
Suspension Bridge Flutter for Girders With Separate Control Faps
,”
ASCE J. Bridge Eng.
,
6
(
3
), pp.
168
175
.
15.
Wilde
,
K.
, and
Fujino
,
Y.
,
1998
, “
Aerodynamic Control of Bridge Deck Flutter by Active Surfaces
,”
ASCE J. Eng. Mech.
,
124
(
7
), pp.
718
727
.
16.
Li
,
K.
,
Ge
,
Y. J.
,
Guo
,
Z. W.
, and
Zhao
,
L.
,
2015
, “
Theoretical Framework of Feedback Aerodynamic Control of Flutter Oscillation for Long-Span Suspension Bridges by the Twin-Winglet System
,”
J. Wind Eng. Ind. Aerodyn.
,
145
, pp.
166
177
.
17.
Omenzetter
,
P.
,
Wilde
,
K.
, and
Fujino
,
Y.
,
2000
, “
Suppression of Wind-Induced Instabilities of a Long Span Bridge by a Passive Deck-Flaps Control System—Part I: Formulation
,”
J. Wind Eng. Ind. Aerodyn.
,
87
(
1
), pp.
61
69
.
18.
Graham
,
J. M. R.
,
Limebeer
,
D. J. N.
, and
Zhao
,
X.
,
2011
, “
Aeroelastic Control of Long-Span Suspension Bridges
,”
ASME J. Appl. Mech.
,
78
(
4
), p.
041018
.
19.
Bakis
,
K. N.
,
Massaro
,
M.
,
Williams
,
M. S.
, and
Limebeer
,
D. J. N.
,
2016
, “
Aeroelastic Control of Long-Span Suspension Bridges With Controllable Winglets
,”
Struct. Control Health Monit.
,
23
(
12
), pp.
1417
1441
.
20.
Nissen
,
H. D.
,
Sørensen
,
P. H.
, and
Jannerup
,
O.
,
2004
, “
Active Aerodynamic Stabilisation of Long Suspension Bridges
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
10
), pp.
829
847
.
21.
Phan
,
D. H.
, and
Nguyen
,
N. T.
,
2013
, “
Flutter and Buffeting Control of Long-Span Suspension Bridge by Passive Flaps: Experiment and Numerical Simulation
,”
Int. J. Aeronaut. Space Sci.
,
14
(
1
), pp.
46
57
.
22.
Abramowitz
,
M.
, and
Stegun
,
A.
,
1970
,
Handbook of Mathematical Functions
,
Dover Publications
,
Mineola, NY
.
23.
Chen
,
X.
,
Matsumoto
,
M.
, and
Kareem
,
A.
,
2000
, “
Aerodynamic Coupling Effects on Flutter and Buffeting of Bridges
,”
ASCE J. Eng. Mech.
,
126
(
1
), pp.
17
26
.
24.
Chen
,
X.
, and
Kareem
,
A.
,
2002
, “
Advances in Modeling of Aerodynamic Forces on Bridge Decks
,”
ASCE J. Eng. Mech.
,
128
(
11
), pp.
1193
1205
.
25.
Kuo
,
B. C.
, and
Golnaragahi
,
F.
,
2003
,
Automatic Control Systems
,
Wiley
,
Singapore
.
26.
Tamagawa Seiki, 2018, “DC Servomotors/DC Motors Catalogue No. T12-1633N1,” Tamagawa Seiki Co. Ltd., Iida-shi, Japan, accessed Feb. 13, 2018, https://advantechinternational.com/wp-content/uploads/2014/03/TRE%20Series%20DC%20SERVOMOTORS%20-%20DC%20MOTORS.pdf
27.
Lewis
,
F. L.
, and
Syrmos
,
V. L.
,
1995
,
Optimal Control
,
Wiley
,
New York
.
28.
Levine
,
W. S.
, and
Michael
,
A.
,
1970
, “
On the Determination of the Optimal Constant Output Feedback Gains for Linear Multivariable Systems
,”
IEEE Trans. Autom. Control
,
15
(
1
), pp.
44
48
.
29.
Moerder
,
D. D.
, and
Calise
,
A. J.
,
1985
, “
Convergence of a Numerical Algorithm for Calculating Optimal Output Feedback Gains
,”
IEEE Trans. Autom. Control
,
30
(
9
), pp.
900
903
.
30.
Halyo
,
N.
,
Moerder
,
D. D.
,
Broussard
,
J. R.
, and
Taylor
,
D. B.
,
1989
, “
A Variable-Gain Output Feedback Control Design Methodology
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-4226
.https://ntrs.nasa.gov/search.jsp?R=19890009945
31.
Wu
,
T.
, and
Kareem
,
A.
,
2013
, “
Bridge Aerodynamics and Aeroelasticity: A Comparison of Modelling Schemes
,”
J. Fluids Struct.
,
43
, pp.
347
370
.
32.
Katz
,
J.
, and
Plotkin
,
A.
,
2010
,
Low-Speed Aerodynamics
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.